|Table of Contents|

Effects of Cu2+ or Cd2+ stress on photosynthetic pigment and photosynthetic fluorescence characteristics of Potamogeton malaianus(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2019 03
Research Field:
Publishing date:


Effects of Cu2+ or Cd2+ stress on photosynthetic pigment and photosynthetic fluorescence characteristics of Potamogeton malaianus
GAO Guiqing1 2 JIAN Minfei3 LU Long1** JI Yong2 WANG Xianglian2 WANG Yan2 & WANG Xueru2
1 School of Resource Environment and Chemical Engineering, Nanchang University, Nanchang 330031, China 2 School of Civil and Architecture Engineering, Nanchang Institute of Technology, Nanchang 330099, China 3 College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
Potamogeton malaianus heavy metal stress photosynthetic pigment photosynthetic fluorescence fluorescence imaging

For a comprehensive study of the effects of different heavy metals on plant photosynthetic pigments and photosynthetic fluorescence characteristics, Potamogeton malaianus was selected as experimental material. Potamogeton malaianus was subjected to six separate concentration levels of Cu2+ or Cd2+. Photosynthetic pigments were determined by acetone extraction. Fluorescence parameters were detected by an underwater fluorometer in situ. The total chlorophyll (Ct), chlorophyll a (Ca), chlorophyll b (Cb), and carotenoid (Cc) decreased significantly (P < 0.01) with the increase of Cu2+ or Cd2+ concentrations. The toxic effect of Cu2+ stress on chloroplasts was greater than that of Cd2+. Moreover, the maximum photochemical efficiency Fv/Fm, potential photochemical efficiency Fv/Fo, effective quantum yield Y(II) and photochemical quenching coefficient qP also showed a significant downward trend (P < 0.01), and the effect of Cu2+ stress was more highly significant. Under Cu2+ treatment, regulated energy dissipation quantum yield Y(NPQ) and the non-photochemical quenching coefficient qN first increased and then decreased. Under Cd2+ treatment, both Y(NPQ) and qN exhibited a highly significant upward trend (P < 0.01). The difference between non-regulated energy dissipation quantum yield Y(NO) in each treatment group was not significant. The relative electron transfer rate ETR decreased more under Cu2+ treatment. Under the treatment of 0.5 mg/L Cu2+, the photosynthesis pigment content, Fv/Fm, Fv/Fo, Y(II), and ETR of P. malaianus were significantly lower than that of the control group. Under the treatment of 0.5 mg/L and 1.0 mg/L Cd2+, P. malaianus had normal photosynthetic activity. Fluorescence imaging showed that the damage began at the edge of the leaves, and the resistance of the veins to heavy metals was stronger than that of the mesophyll. Under the same treatment concentration, the degree of damage of Cu2+ treatment on the leaves was greater than that of Cd2+ treatment. P. malaianus was more resistant to Cd2+ than Cu2+. It can be suggested that P. malaianus be used as a repairing species in low-concentration Cd2+ contaminated waters.


1 Xing W, Wu HP, Hao BB, Huang WM, Liu GH. Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes [J]. Environ Sci Technol, 2013, 47 (9): 4695-4703
2 Ji Y, Wu PJ, Zhang J, Zhang J, Zhou YF, Peng YW, Zhang SF, Cai GT, Gao GQ. Heavy metal accumulation, risk assessment and integrated biomarker responses of local vegetables: a case study along the Le’an river [J]. Chemosphere, 2018, 199: 361-371
3 Ji Y, Zhang J, Li XL, Peng YW, Cai GT, Gao GQ,Wu JQ, Liu JL. Biomarker responses of rice plants growing in a potentially toxic element polluted region: a case study in the Le’an region [J]. Chemosphere, 2017, 187: 97-105
4 Xue PY, Li GX, Liu WJ, Yan CZ. Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle [J]. Chemosphere, 2010, 81 (9): 1098-1103
5 Xing W, Bai G, Wu HP, Liu H, Liu GH. Effect of submerged macrophytes on metal and metalloid concentrations in sediments and water of the Yunnan Plateau lakes in China [J]. J Soils Sed, 2017, 17 (10): 1-10
6 Upadhyay AK, Singh NK, Rai UN. Comparative metal accumulation potential of Potamogeton pectinatus L. and Potamogeton crispus L.: role of enzymatic and non-enzymatic antioxidants in tolerance and detoxification of metals [J]. Aquat Bot, 2014, 117 (5): 27-32
7 Wang PF, Zhang SH, Wang C, Lu J. Effects of Pb on the oxidative stress and antioxidant response in a Pb bioaccumulator plant Vallisneria natans [J]. Ecotoxicol Environ Saf, 2012, 78: 28-34
8 Nagajyoti PC, Lee KD, Sreekanth TVM. Heavy metals, accurrence and toxicity for plants: a review [J]. Environ Chem Lett, 2010, 8 (3): 199-216
9 Shahid M, Dumat C, Khalid S, Schreck E, Xiong T. Foliar heavy metal uptake, toxicity and detoxification in plants: a comparison of foliar and root metal uptake [J]. J Hazard Mat, 2017, 325: 36-58
10 杨海燕, 施国新, 徐勤松, 计汪栋, 王红霞, 李阳. Cd2+胁迫对竹叶眼子菜的毒理学效应分析[J]. 应用与环境生物学报, 2008, 14 (3): 366-370 [Yang HY, Shi GX, Xu QS, Ji WD,Wang HX, Li Y. Phytotoxicity of Cd2+ on leaf cells of Potamogeton malaianus [J]. Chin J Appl Environ Biol, 2008, 14 (3): 366-370]
11 Ferreira C, Horta PA, Almeida GM, Zitta CS, Oliveira EM, Gueye MB, Rodrigues AC. Anatomical and ultrastructural adaptations of seagrass leaves: an evaluation of the southern Atlantic groups [J]. Protoplasma, 2015, 252 (1): 3-20
12 简敏菲, 张乖乖, 史邪甜, 余厚平, 陈奕奇. 土壤镉、铅及其复合污染胁迫对丁香蓼(Ludwigia prostrate)的生长及其光合荧光特性的影响[J]. 应用与环境生物学报, 2017, 23 (5): 837-844 [Jian MF, Zhang GG, Shi YT, Yu HP, ChenYQ. Effects of single and combined pollution stress of cadmium and lead in soil on the growth and photosynthetic fluorescence characteristics of Ludwigia prostrata [J]. Chin J Appl Environ Biol, 2017, 23 (5): 837- 844]
13 Borisova GG, Chukina NV, Maleva MG, Levchenko UA. Accumulation of heavy metals in leaves of submerged hydrophytes (Elodea canadensis Michx. and Potamogeton perfoliatus L.) and their responses to the effect of the wastewater of a metallurgical plant [J]. Inland Water Biol, 2017, 10 (2): 176-181
14 Yi ZJ, Yao J, Zhu MJ, Chen HL, Wang F, Yuan ZM, Liu X. Batch study of uranium biosorption by Elodea canadensis biomass [J]. J Radioanal Nucl Chem, 2016, 310: 505-313
15 Ahmad SS, Reshi ZA, Shah MA, Rashid I, Ara R, Andrabi SMA. Heavy metal accumulation in the leaves of Potamogeton natans and Ceratophyllum demersum in a Himalayan RAMSAR site: management implications [J]. Wetlands Ecol Manage, 2016, 24: 469-475
16 邱昌恩, 刘国祥, 况琪军, 胡征宇. Cu2+对一种绿球藻生长及生理特性的影响[J]. 应用与环境生物学报, 2005, 11(6): 690-693 [Qiu CE, Liu GX, Kuang QJ, Hu ZY. Effect of Cu2+ on growth and physiological characteristics of Chlorococcum sp. [J]. Chin J Appl Environ Biol, 2005, 11 (6): 690-693]
17 Joanna A, Zbigniew G, Anna KG, Pawel W, Anna K. Accumulation patterns of Cr in Callitriche organs-qualitative and quantitative analysis [J]. Environ Sci Pollut Res, 2016, 23: 2669-2676
18 Liu H, Cao Y, Li W, Zhang Z, Jeppesen E, Wang W. The effects of cadmium pulse dosing on physiological traits and growth of the submerged macrophyte Vallisneria spinulosa and phytoplankton biomass: a mesocosm study [J]. Environ Sci Pollut Res, 2017, 24 (18): 15308-15314
19 Ferreira C, Horta PA, Almeida GM, Zitta CS, Oliveira EM, Gueye MYB, Rodrigues AC. Anatomical and ultrastructural adaptations of seagrass leaves: an evaluation of the southern Atlantic groups [J]. Protoplasma, 2015, 252: 3-20
20 刘治华. 重污染湖泊沉水植被重建的生理生态研究[D]. 武汉: 华中师范大学, 2006 [Liu ZH. Physio-ecological study of submerged vegetation restoration in hypereutrophic lake [D]. Wuhan: Central China Normal University, 2006]
21 林世青, 许春辉, 张其德, 徐黎, 毛大璋, 匡廷云.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用[J]. 植物学通报, 1992, 9 (1): 1-16 [Lin SQ, Xu CH, Zhang QD, Xu L, Mao DZ, Kuang TY. Some application of chlorophyll fluorescence kinetics to plant stress physiology, to ecology and agricultural modernization [J]. Chin Bull Bot, 1992, 9 (1): 1-16
22 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社,2000 [Li HS. The Experimental Principle and Technique on Plant Physiology and Biochemistry [M]. Beijing: Higher Education Press, 2000]
23 吕念泽, 高桂青, 吕顺华, 王岩, 夏桢妍, 赵蒙, 王锴, 冯裕发. Cu2+胁迫对马来眼子菜光合荧光特性的影响[J]. 南昌工程学院学报, 2018, 37 (4): 31-34 [Lü NZ, Gao GQ, Lü SH, Wang Y, Xia ZY, Zhao M, Wang K, Feng YF. Influence of Cu2+ stress on photosynthetic fluorescence characteristics of Potamogeton Malaianus [J]. J Nanchang Inst Technol, 2018, 37 (4): 31-34]
24 郭书奎, 赵可夫.NaCl胁迫抑制玉米幼苗光合作用的可能机理[J].植物生理学报, 2001, 27 (6): 461-466 [Guo SK, Zhao KF. The possible mechanisms of NaCl inhibit photosythesis of maize seedlings [J]. Plant Physiol Commun, 2001, 27 (6): 461-466]
25 贺俊芳, 王水才, 张舒, 贺锋涛.内周天线CP43、CP47中β-Car到Chla分子间的能量传递[J]. 光子学报, 2001, 30 (4): 385-390 [He JF, Wang SC, Zhang S, He FT. Energy transfer from β-Car transfer to Chla in inner antennas, CP43 and CP47 [J]. Acta Phot Sin, 2001, 30 (4): 385-390]
26 段伦超, 王风贺, 张帆, 纪营雪, 李卉, 韩睿明, 王国祥. 菹草在低浓度含铜尾水净化过程中的毒性研究[J]. 生态与农村环境学报, 2014, 30 (2): 228-233 [Duan LC, Wang FH, Zhang F, Ji YX, Li H, Han RM, Wang GX. Tolerance of Potamogeton crispus to toxicity in purifying low concentration copper containing tailwater [J]. J Ecol Rural Environ, 2014, 30 (2): 228-233]
27 简敏菲, 汪斯琛, 余厚平, 李玲玉, 简美锋, 余冠军. Cd2+、Cu2+胁迫对黑藻的生长及光合荧光特性的影响[J]. 生态学报, 2016, 36 (6): 1719-1727 [Jian MF, Wang SC, Yu HP, Li LY, Jian MF, Yu GJ. Influence of Cd2+or Cu2+ stress on the growth and photosynthetic fluorescence characteristics of Hydrilla verticillata [J]. Acta Ecol Sin, 2016, 36 (6): 1719-1727]
28 Kalaji HM, Jajoo A, Oukarroum A, Brestic M, Zivcak M, Samborska IA, Cetner MD, Lukasik I, Goltsev V, Ladle RJ. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions [J]. Acta Physiol Plant, 2016, 38 (4):102
29 Ma YL, Wang HF, Wang P, Yu CG, Luo SQ, Zhang YF, Xie YF. Effects of cadmium stress on the antioxidant system and chlorophyll fluorescence characteristics of two Taxodium clones plant [J]. Cell Reports, 2018, 37:1547-1555
30 孙德智, 韩晓日, 彭靖, 范富, 杨恒, 马玉露, 侯迷红. 外源NO和水杨酸对盐胁迫下番茄幼苗光合机构的保护作用[J]. 应用与环境生物学报, 2018, 24(3): 457-464 [Sun DZ, Han XR, Peng J, Yang H, Ma YL, Hou MH. Protective effect of exogenous nitric oxide and salicylic acid on the photosynthetic apparatus of tomato seedling leaves under NaCl stress [J]. Chin J Appl Environ Biol, 2018, 24 (3): 457-464]
31 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 16 (4): 444-448 [Zhang SR. A discussion on chlorophyll fluorescence kinetics parameters and their significance [J]. Chin Bull Bot, 1999, 16 (4): 444-448]
32 李伶, 袁琳, 宋丽娜, 顾詠洁. 镉对浮萍叶绿素荧光参数的影响[J]. 环境科学学报, 2010, 30 (5): 1062-1068 [Li L, Yuan L, Song LN, Gu YJ. Effects of cadmium stress on chlorophyll fluorescence parameters of Lemna Minor L. [J]. Acta Sci Circum, 2010, 30 (5): 1062-1068]
33 Mallick N, Mohn FH. Use of chlorophyll fluorescence in metal-stress research: a case study with the green Microalga scenedesmus [J]. Ecotoxicol Environ Saf, 2003, 55 (1): 64-69
34 Pereira AS, Cortez PA, Almeida AF, Prasad MNV, Franca MGC, Cunda M, Jesus RM, Mangabeira PAO. Morphology, ultrastructure, and element uptake in Calophyllum brasiliense Cambess. (Calophyllaceae J. Agardh) seedlings under cadmium exposure [J]. Environ Sci Pollut Res, 2017, 24: 15576-15588
35 Tang HH, Yang T, Hu HY, Tang CF, Lu CY. Effects of cadmium and its subcellular distribution on the photosynthesis of Cauliflower [J]. Acta Horticul Sin, 2008, 35 (9): 1291-1296
36 Liu ZL, Chen W, He XY. Influence of Cd2+ on growth and chlorophyll fluorescence in a hyperaccumulator: Lonicera japonica Thunb [J]. J Plant Growth Regul, 2015, 34: 672-676
37 计汪栋, 施国新, 杨海燕, 徐勤松, 许晔, 张慧. 铜胁迫对竹叶眼子菜叶片生理指标和超微结构的影响[J]. 应用生态学报, 2017, 18 (12):2727-2732 [Ji WD, Shi GX, Yang HY, Xu QS, Xu Y, Zhang H. Effects of Cu2+ stress on leaf physiological indice and ultrastructure of Potamogeton malaianus [J]. Chin J Appl Ecol, 2017, 18(12): 2727-2732]
38 马梦洁, 张毅敏, 杨飞, 高汾, 丁轶睿, 孔明, 李定龙. 沉水植物黑藻的拓殖能力和光合荧光特性[J]. 应用与环境生物学报, 2016, 22 (5): 752-758 [Ma MJ, Zhang YM, Yang F, Gao F, Ding YR, Kong M, Li DL. The propagation ability and photosynthetic fluorescence characteristics of submerged plant Hydrilla verticillata [J]. Chin J Appl Environ Biol, 2016, 22 (5): 752-758]


Last Update: 2019-06-25