|Table of Contents|

Seasonal dynamics of soil nitrogen transformation enzymes at four plantations in the western edge of Sichuan basin

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2019 03
Page:
634-639
Research Field:
Articles
Publishing date:

Info

Title:
Seasonal dynamics of soil nitrogen transformation enzymes at four plantations in the western edge of Sichuan basin
Author(s):
LIN Yu1 NIE Fuyu1 YANG Wanqin1 2 LIU Qun1 LI Tingting 1 PU Yue1 MOU Ling1 & XU Zhenfeng1 2**
1 Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forest, Sichuan Agricultural University, Chengdu 611130, China 2 Monitoring Station for Eco-environments in the Rainy Zone of Southwest China, Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, China
Keywords:
nitrogen transformation enzyme seasonal dynamic environmental factor plantation Sichuan basin
CLC:
S714.8
PACS:
DOI:
10.19675/j.cnki.1006-687x.201809013
DocumentCode:

Abstract:
The goal of this study was to compare the activities of enzymes involved nitrogen transformation (urease, nitrate reductase, and nitrite reductase), and to provide some scientific reference for ecological restoration in this area. Soil samples of two layers (0–20 cm and 20–40 cm) were collected from 4 plantations (Cryptomeria fortunei, Michelia wilsonii, Phoebe zhennan, and Quercus acutissima) in March, June, September, and December 2015 in the western edge of the Sichuan basin. Soil samples were used to determine three soil enzyme activities (urease, nitrate reductase, and nitrite reductase) involved in nitrogen transformation. Regardless of forest type, there were significant seasonal dynamic differences in soil urease and nitrate reductase, but not for nitrite reductase. Soil urease activity was significantly higher in spring than in the other three seasons. In autumn, all four plantations had relatively high soil nitrate reductase activity as compared to that of the other three seasons. The average values of soil urease over the four seasons was Phoebe zhennan (0.914 mg/g) > Michelia wilsonii (0.703 mg/g) > Cryptomeria fortune (0.647 mg/g) > Quercus acutissima (0.640 mg/g). The average values of soil nitrate reductase in four seasons were Cryptomeria fortune (0.017 mg/g) > Michelia wilsonii (0.016 mg/g) > Quercus acutissima (0.014 mg/g) > Phoebe zhennan (0.013 mg/g). The average values of soil nitrite reductase were Phoebe zhennan (0.286 mg/g) > Michelia wilsonii (0.276 mg/g) > Cryptomeria fortune (0.273 mg/g) > Quercus acutissima (0.236 mg/g). The effects of forest type on soil enzymes were dependent on soil layer, season, and enzyme category. In conclusion, season-driven environmental variations may have stronger effects on soil enzyme activities involved in nitrogen cycling as compared to forest type.

References

1 Iii FSC, Matson PA, Mooney H A. Principles of Terrestrial Ecosystem Ecology [M]. New York: Springer Science Business Media, LLC, 2014: 369-397
2 李光耀, 杨晓东, 史青茹, 马文济, 王希华, 阎恩荣. 浙江天童森林砍伐对土壤养分库和氮矿化-硝化特征的影响[J]. 生态学杂志, 2014, 33 (3): 709-715 [Li GY, Yang XD, Shi QR, Ma WJ, Wang XH, Yan ER. Effects of clear-felling on soil nutrient pools and nitrogen mineralization and nitrification in Tiantong, Zhejiang Province [J]. Chin J Ecol, 2014, 33 (3): 709-715]
3 肖好燕, 刘宝, 余再鹏, 万晓华, 桑昌鹏, 周富伟, 黄志群. 亚热带不同林分土壤矿质氮库及氮矿化速率的季节动态[J]. 应用生态学报, 2017, 28 (3): 730-738 [Xiao HY, Liu B Yu ZP, Wan XH, Sang CP, Zhou FW, Huang ZQ. Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forest [J]. Chin J Appl Ecol, 2017, 28 (3): 730-738]
4 张萍, 章广琦, 赵一娉, 彭守璋, 陈云明, 曹扬. 黄土丘陵区不同森林类型叶片-凋落物-土壤生态化学计量特征[J]. 生态学报, 2018, 38 (14): 5087-5098 [Zhang P, Zhang GQ, Zhao YP, Peng SZ, Chen YM, Cao Y. Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the Loess hilly-gully region of China [J]. Acta Ecol Sin, 2018, 38 (14): 5087-5098]
5 Grayston SJ, Prescott CE. Microbial communities in forest floors under four tree species in coastal British Columbia [J]. Soil Biol Biochem, 2005, 37 (6): 1157-1167
6 Gronli KE, Frostegard A, Bakken LR, Ohlson M. Nutrient and carbon additions to the microbial soil community and its impact on tree seedlings in a boreal spruce forest [J]. Plant Soil, 2005, 278 (1/2): 275-291
7 Christenson LM, Lovett GM, Weathers KC, Arthur MA. The influence of tree species, nitrogen fertilization, and soil C to N ratio on gross soil nitrogen transformations [J]. Soil Sci Soc Am J, 2009, 73 (2): 638-646
8 杨文彬, 耿玉清, 王冬梅. 漓江水陆交错带不同植被类型的土壤酶活性[J]. 生态学报, 2015, 35 (14): 4604-4612 [Yang WB, Geng YQ, Wang DM. The activities of soil enzyme under different vegetation types in Li River riparian ecotones [J]. Acta Ecol Sin, 2015, 35 (14): 4604-4612]
9 Isobe K, Koba K, Otsuka S, Senoo K. Nitrification and nitrifying microbial communities in forest soils [J]. J For Res-JPN, 2011, 16 (5): 351-362
10 Wang CH, Wan SQ, Xing XR, Zhang L, Han XG. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China [J]. Soil Biol Biochem, 2006, 38 (5): 1101-1110
11 杨玉莲. 模拟增温对高山森林土壤微生物和酶活性的影响[D]. 雅安: 四川农业大学, 2012 [Yang YL. Effects of simulated warming on soil microbial and enzyme activity in the alpine forests [D]. Ya’an: Sichuan Agricultural University, 2012]
12 王冰冰, 曲来叶, 马克明, 张心昱, 宋成军. 岷江上游干旱河谷优势灌丛群落土壤生态酶化学计量特征[J]. 生态学报, 2015, 35 (18): 6078-6088 [Wang BB, Qu LY, Ma KM, Zhang XY, Song CJ. Patterns of ecoenzymatic stoichiometry in the dominant shrubs in the semi-arid Upper Minjiang River [J]. Acta Ecol Sin, 2015, 35 (18): 6078-6088]
13 赛牙热木?哈力甫, 艾克拜尔?伊拉洪, 宋瑞清, 阿不都赛买提?乃合买提, 米日尼沙?买买提明, 迪里努尔?艾力. 察布查尔草原土壤酶活性垂直分布及土壤理化性质相关性研究[J]. 草业学报, 2018, 27 (3): 116-125 [S?Halifu, A?Yilahong, Song RQ, A?Naihemaiti, M?Maimaitiming, D?Aili. Correlation between soil enzyme activities and soil physical chemical properties in Chabuchar Grassland [J]. Acta Pratac Sin, 2018, 27 (3): 116-125]
14 杨开军, 杨万勤, 庄丽燕, 李志杰, 贺若阳, 谭波, 张丽, 肖玖金, 徐振锋. 四川盆地西缘都江堰大气氮素湿沉降特征[J]. 应用与环境生物学报, 2018, 24 (1): 107-111 [Yang KJ, Yang WQ, Zhuang LY, Li ZJ, He RY, Tan B, Zhang L, Xiao JJ, Xu ZF. Characteristics of atmospheric wet nitrogen deposition in Dujiangyan, western edge of Sichuan Basin [J]. Chin J Appl Environ Biol, 2018, 24 (1): 107-111]
15 薛立, 邝立刚, 陈红跃, 谭绍满. 不同林分土壤养分、微生物与酶活性的研究[J]. 土壤学报, 2003, 40 (2): 280-285 [Xue L, Kuang LG, Chen HY, Tan SM. Soil nutrients, microorganisms and enzyme activities of different stands [J]. Acta Pedol Sin, 2003, 40 (2): 280-285]
16 聂富育, 杨万勤, 杨开军, 贺若阳, 庄丽燕, 李志杰, 徐振锋. 四川盆地西缘4种人工林土壤团聚体及有机碳特征[J]. 应用与环境生物学报, 2017, 23 (3): 542-547 [Nie FY, Yang WQ, Yang KJ, He RY, Zhuang LY, Li ZJ, Xu ZF. Soil aggregates and organic carbon in four plantations on the western edge of the Sichuan Basin [J]. Chin J Appl Environ Biol, 2017, 23 (3): 542-547]
17 关松荫. 土壤酶及其研究方法[M]. 北京: 农业出版社, 1986: 1-13 [Guan S Y. Soil Enzymes and Its Methodology [M]. Beijing: China Agriculture Press, 1986: 1-13]
18 武志杰, 隽英华, 陈利军. 一种检测土壤硝酸还原酶活性的分析方法: CN101271060 [P]. 2008 [Wu ZJ, Juan YH, Chen LJ. An analytical method for Soil Nitrate reductase activity: CN101271060 [P]. 2008]
19 李志萍, 吴福忠, 杨万勤, 徐振锋, 苟小林, 熊莉, 殷睿, 黄莉. 川西亚高山森林林窗不同时期土壤转化酶和脲酶活性的特征[J]. 生态学报, 2015, 35 (12): 3919-3925[Li ZP, Wu FZ, Yang WQ, Xu ZF, Gou XL, Xiong L, Yin R, Huang L. Soil invertase and urease activities at different periods in subalpine forest gap in western Sichuan [J]. Acta Ecol Sin, 2015, 35 (12): 3919-3925]
20 Griffiths RP, Homann PS, Riley R. Denitrification enzyme activity of Douglas-fir and red Alder forest soils of the Pacific Northwest [J]. Soil Biol Biochem, 1998, 30 (8/9): 1147-1157
21 Knowles R. Denitrification [J]. FEMS Micmbiol Rev, 1982, 46 (1): 43-70
22 陈利军, 武志杰, 姜勇, 周礼恺. 与氮转化有关的土壤酶活性对抑制剂施用的响应[J].应用生态学报, 2002, 13 (9): 1099-1103 [Chen LJ, Wu ZJ, Jiang Y, Zhou LK. Response of N transformation related soil enzyme activities to inhibit or applications [J]. Chin J Appl Ecol, 2002, 13 (9): 1099-1103]
23 陈栎霖. 台湾桤木-黑麦草复合模式凋落物分解对模拟氮沉降的初期响应[D]. 雅安: 四川农业大学, 2014 [Chen YL. The initial responses of simulated N deposition in litter decomposition of intercropping system Alnus formosana-Lolium multiflorum compound mode [D]. Ya’an: Sichuan Agricultural University, 2014]
24 张海鑫, 曾全超, 安韶山, 王宝荣, 白雪娟. 子午岭典型植被凋落叶-土壤养分与酶活性特征[J]. 生态学报, 2018, 38 (7): 2262-2270 [Zhang HX, Zeng QC, An SS, Wang BR, Bai XJ. Soil enzyme activities, soil and leaf litter nutrients of typical vegetation in Ziwuling Mountain [J]. Acta Ecol Sin, 2018, 38 (7): 2262-2270]
25 邱月, 刘平, 魏忠平, 范俊岗, 邢献予, 李仁平, 宋岩, 马成才. 渤海泥质海岸四种典型防护林对土壤微生物生物量、酶活性及土壤养分的影响[J]. 土壤通报, 2017, 14 (5): 1119-1125 [Qiu Y, Liu P, Wei ZP, Fan JG, Xing XY, Li RP, Song Y, Ma CC. Effects of four typical shelterbelts on soil microbial biomass, enzyme activities and soil nutrient in the Bohai muddy coast [J]. Chin J Soil Sci, 2017, 14 (5): 2262-2270]
26 Barton L, Schipper LA, Smith CT, McLay CDA. Denitrification enzyme activity is limited by soil aeration in a wastewater-irrigated forest soil [J]. Biol Fert Soils, 2000, 32 (5): 385-389
27 白红英, 韩建刚, 赵一萍. 不同土层土壤理化生性状与反硝化酶活性N2O排放通量的相关性研究[J]. 农业环境科学学报, 2002, 21 (3): 193-196 [Bai HY, Han JG, Zhao YP. Correlations between physical, chemical and biological properties and denitrifying enzyme activity, N2O flux in soil profiles [J]. J Agro-Environ Sci, 2002, 21 (3): 193-196]
28 王莹, 胡春胜. 环境中的反硝化微生物种群结构和功能研究进展[J]. 中国生态农业学报, 2010, 18 (6): 1378-1384 [Wang Y, Hu CS. Research advances on community structure and function of denitrifiers [J]. Chin J Eco-Agric, 2010, 18 (6): 1378-1384]
29 Linn DM, Doran JW. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and Nontilled soils [J]. Soil Sci Soc Am J, 1984, 48 (3): 647-653
30 Morkved PT, D?rsch P, Henriksen TM, Bakken LR. N2O emissions and product ratios of nitrification and denitrification as affected by freezing and thawing [J]. Soil Biol Biochem, 2006, 38 (12): 3411-3420
31 Katsuyama C, Kondo N, Suwa Y, Yamagishi T, Itoh M, Ohte N, Kimura H, Nagaosa K, Kato K. Denitrification activity and relevant bacteria revealed by nitrite reductase gene fragments in soil of temperate mixed forest [J]. Microbes Environ, 2008, 23 (4): 337-345
32 徐振锋, 唐正, 万川, 熊沛, 曹刚, 刘庆. 模拟增温对川西亚高山两类针叶林土壤酶活性的影响[J]. 应用生态学报, 2010, 21 (11): 2727-2733 [Xu ZF, Tang Z, Wang C, Xiong P, Cao G, Liu Q. Effects of simulated warming on soil enzyme activities in two subalpine coniferous forests in west Sichuan [J]. Chin J Appl Ecol, 2010, 21 (11): 2727-2733]

Memo

Memo:
-
Last Update: 2019-06-25