|Table of Contents|

Degradation of lignocellulose by Termitomyces(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2019 03
Research Field:
Publishing date:


Degradation of lignocellulose by Termitomyces
WANG Chengpan1 LIANG Shiyou1 YIN Xuejie1 YU Baoting2 HU Yin2 & MO Jianchu1**
1Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests (Ministry of Agriculture Key Laboratory of Agricultural Entomology), Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China 2National Termite Control Center of China, Hangzhou 310011, China
Odontotermes formosanus Termitomyces lignocellulose biodegradation biomass

The symbiotic system formed by termites, bacteria, and fungi plays a very important role in the degradation of biomass in the natural world. Studying the ability of the symbiotic fungus Termitomyces to degrade lignocellulose will help reveal the nature of the relationship between Termitomyces and termites, and should also provide a theoretical basis for using Termitomyces to develop biomass energy. Wood material with and without pretreatment with the fungus Gloeophyllum trabeum was treated with either Odontotermes formosanus fungus combs (OFC), solid cultures of Termitomyces (TA), or liquid cultures of Termitomyces (TL) to investigate the ability of Termitomyces to degrade lignocellulose. In the non-pretreated wood material, the degradation rates of cellulose, hemicellulose, and lignin by OFC were 15.22%, 29.34%, and 6.01%, respectively, when treated for 90 days, while the degradation rates of these by TA were 20.98%, 31.89%, and 11.68%, respectively, when treated for 120 days. The degradation rates of cellulose, hemicellulose, and lignin in the pretreated wood material by TL were 14.39%, 24.62%, and 5.05%, respectively. In the pretreated wood material the degradation rates of cellulose, hemicellulose, and lignin by OFC were 37.09%, 42.20%, and 24.95%, respectively, after 120 days of treatment, while the degradation rates of these by TA were 34.77%, 38.29%, and 29.74%, respectively, after 120 days. The degradation rates of cellulose, hemicellulose, and lignin by TL were 30.57%, 30.47%, and 24.36%, respectively. In addition, the degradation rates of lignocellulose in pretreated wood material by OFC, TA, and TL were higher than those in the non-pretreated wood material. Therefore, Termitomyces has some ability to degrade lignocellulose. In particular, the lignin biodegradation ability of Termitomyces shows that it can break the lignocellulosic lignin barrier. This confirms the potential for Termitomyces to be used to degrade lignocellulose to utilize the energy in woody biomass, and also indirectly provides reference values for the artificial cultivation of Termitomyces.


1. Cintas O, Berndes G, Cowie AL, Egnell G, Holmstrom H, Agren G. The climate effect of increased forest bioenergy use in Sweden: evaluation at different spatial and temporal scales [J]. Wires Energy Environ, 2016, 5 (3): 351-369
2. Zhang Z, Harrison MD, Rackemann DW, Doherty WOS, O’Hara IM. Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification [J]. Green Chem, 2016, 18 (2): 360-381
3. Toklu E. Biomass energy potential and utilization in Turkey [J]. Renew Energ, 2017, 107: 235-244
4. 徐丽华, 罗鹏, 严明. 我国生物质能源利用现状[J]. 广州化工, 2016, 44 (11): 47-48 [Xu LH, Luo P, Yan M. Present situation of biomass energy utilization in China [J]. Guangzhou Chem Ind, 2016, 44 (11): 47-48]
5. Xu H, Li B, Mu X. Review of alkali-based pretreatment to enhance enzymatic saccharification for lignocellulosic biomass conversion [J]. Ind Eng Chem Res, 2016, 55 (32): 8691-8705
6. Ntona E, Arabatzis G, Kyriakopoulos GL. Energy saving: views and attitudes of students in secondary education [J]. Renew Sust Energy Rev, 2015, 46: 1-15
7. Chen H, Liu J, Chang X, Chen D, Xue Y, Liu P, Lin H, Han S. A review on the pretreatment of lignocellulose for high-value chemicals [J]. Fuel Process Technol, 2017, 160: 196-206
8. Mckendry P. Energy production from biomass (part 1): overview of biomass [J]. Bioresource Technol, 2002, 83 (1): 37-46
9. Mori T, Tsuboi Y, Ishida N, Nishikubo N, Demura T, Kikuchi J. Multidimensional high-resolution magic angle spinning and solution-state NMR characterization of 13C-labeled plant metabolites and lignocellulose [J]. Sci Rep, 2015, 5:11848
10. Mathews SL, Pawlak J, Grunden AM. Bacterial biodegradation and bioconversion of industrial lignocellulosic streams [J]. Appl Microbiol Biot, 2015, 99 (7): 2939-2954
11. Kundu SK, Mojumder PM, Bhaduri SK, Das BK. Physical characteristics of khimp fibre [J]. Indian J Fibre Text, 2005, 30 (2): 153-156
12. Sun S, Sun S, Cao X, Sun R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials [J]. Bioresource Technol, 2016, 199: 49-58
13. Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass—an overview [J]. Bioresource Technol, 2016, 199: 76-82
14. Rouches E, Herpoel-Gimbert I, Steyer JP, Carrere H. Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review [J]. Renew Sust Energy Rev, 2016, 59: 179-198
15. Brown ME, Chang MCY. Exploring bacterial lignin degradation [J]. Curr Opin Chem Biol, 2014, 19 (1): 1-7
16. Ohkuma M. Termite symbiotic systems: efficient bio-recycling of lignocellulose [J]. Appl Microbiol Biot, 2003, 61 (1): 1-9
17. Ni J, Tokuda G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota [J]. Biotechnol Adv, 2013, 31 (6): 838-850
18. Bignell DE. The Mechanistic Benefits of Microbial Symbionts [M]. Berlin: Springer, 2016: 121-172
19. Taprab Y, Ohkuma M, Johjima T, Maeda Y, Moriya S, Inoue T, Suwanarit P, Noparatnaraporn N, Kudo T. Molecular phylogeny of symbiotic basidiomycetes of fungus-growing termites in Thailand and their relationship with the host [J]. Biosci Biotechnol Biochem, 2002, 66 (5): 1159-1163
20. Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Froslev T, Rosendahl S, Boomsma JJ. The evolution of fungus-growing termites and their mutualistic fungal symbionts [J]. PNAS, 2002, 99 (23): 14887-14892
21. Watanabe H, Tokuda G. Cellulolytic systems in insects [J]. Annu Rev Entomol, 2010, 55 (1): 609-632
22. 杜甫佑, 张晓昱, 王宏勋. 木质纤维素的定量测定及降解规律的初步研究[J]. 生物技术, 2004, 14 (5): 46-48 [Du FY, Zhang XY, Wang HX. Study on quantitative assay and degradation law of lignocellulose [J]. Biotechnology, 2004, 14 (5): 46-48]
23. 唐国涛, 邢沙沙, 黄榕彬, 曹轩, 郭玉. 脂麻秆中纤维素与半纤维素的含量测定[J]. 作物研究, 2012, 26 (1): 53-55 [Tang GT, Xing SS, Huang RB, Cao X, Guo Y. Determination of content of cellulose and hemicellulose in stem of Sesamum indicum L [J]. Crop Res, 2012, 26 (1): 53-55]
24. 郭倩, 何庆邦. 四孢蘑菇生长过程中四种胞外酶活性和木质纤维素降解的变化规律[J]. 食用菌学报, 1998, 5 (2): 13-17 [Guo Q, He QB. The variation law of several extracellular enzyme activity and lignocellulose degradation during the growth period of Agaricus bitorquis [J]. Acta Edulis Fungi, 1998, 5 (2): 13-17]
25. Herbert GMJ, Krishnan AU. Quantifying environmental performance of biomass energy [J]. Renew Sust Energy Rev, 2016, 59: 292-308
26. Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA, Bulet P. Constitutive expression of a cysteine-rich antifungus and a linear antibacteria peptide in a termite insect [J]. J Biol Chem, 2001, 276 (6): 4085-4092
27. Visser AA, Nobre T, Currie CR, Aanen DK, Poulsen M. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites [J]. Microb Ecol, 2012, 63 (4): 975-985
28. Um S, Fraimout A, Sapountzis P, Oh D, Poulsen M. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi [J]. Sci Rep, 2013, 3 (11): 3250
29. Arnam EBV, Currie CR, Clardy J. Defense contracts: molecular protection in insect-microbe symbioses [J]. Chem Soc Rev, 2018, 47 (5): 1638-1651
30. Korb J, Linsenmair KE. Ventilation of termite mounds: new results require a new model [J]. Behav Ecol, 2000, 11 (5): 486-494
31. Korb J. Thermoregulation and ventilation of termite mounds [J]. Naturwissenschaften, 2003, 90 (5): 212-219
32. Costa RR, Hu H, Pilgaard B, Vreeburg SME, Schuckel J, Pedersen KSK, Kracun SK, Busk PK, Harholt J, Sapountzis P, Lange L, Aanen D, Poulsen M. Enzyme activities at different stages of plant biomass decomposition in three species of fungus-growing termites [J]. Appl Environ Microb, 2018, 84 (5): e1815
33. 赵凯, 常志威, 张小燕, 郝妍, 吴桐, 平文祥, 周东坡. 白蚁肠道共生微生物多样性及其防治方法研究现状[J]. 应用与环境生物学报, 2012, 18 (2): 331-337 [Zhao K, Chang ZW, Zhang XY, Hao Y, Wu T, Ping WX, Zhou DP. Recent advances in diversity of symbiotic microbes in termite gut and termite control methods [J]. Chin J Appl Environ Biol, 2012, 18 (2): 331-337]
34. Matoub M, Rouland C. Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp [J]. Comp Biochem Phys B, 1995, 112 (4): 629-635
35. Johjima T, Taprab Y, Noparatnaraporn N, Kudo T, Ohkuma M. Large-scale identification of transcripts expressed in a symbiotic fungus (Termitomyces) during plant biomass degradation [J]. Appl Microbiol Biot, 2006, 73 (1): 195-203
36. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Michailof CM, Pilavachi PA, Lappas AA. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin [J]. J Anal Appl Pyrol, 2014, 105 (5): 143-150
37. Li HJ, Dietrich C, Zhu N, Mikaelyan A, Ma B, Pi RX, Liu Y, Yang MY, Brune A, Mo JC. Age polyethism drives community structure of the bacterial gut microbiota in the fungus-cultivating termite Odontotermes formosanus [J]. Environ Microbiol, 2016, 18 (5): 1440-1451
38. 孙新新, 宁娜, 谭慧军, 倪金凤. 白蚁肠道微生物多样性和作用研究进展[J]. 应用与环境生物学报, 2017, 23 (4): 764-770 [Sun XX, Ning N, Tan HJ, Ni JF. Research progress of diversity and function of symbiotic microbes in the gut of termites [J]. Chin J Appl Environ Biol, 2017, 23 (4): 764-770]
39. Yang F, Xu B, Li J, Huang Z. Transcriptome analysis of Termitomyces albuminosus reveals the biodegradation of lignocellulose [J]. Acta Microbiol Sin, 2012, 52 (4): 466-477


Last Update: 2019-06-25