|Table of Contents|

Characteristics of soil properties and fractal dimensions of destroyed and naturally restored forest land under flood disaster disturbance(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2019 01
Page:
29-37
Research Field:
Articles
Publishing date:

Info

Title:
Characteristics of soil properties and fractal dimensions of destroyed and naturally restored forest land under flood disaster disturbance
Author(s):
LUO Qinghu1 2 WU Jianzhao1 2 CUI Yu1 2 SUN Fan1 2 LIN Yongming1 2** WAN Daojie3 & WU Chengzhen1 4
1 College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2 Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fuzhou 350002, China 3 Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China 4 College of Ecology and Resources Engineering, Wuyi University, Nanping 354300, China
Keywords:
flood disaster forest soil fractal dimension physicochemical property vegetation restoration
CLC:
S714.2
PACS:
DOI:
10.19675/j.cnki.1006-687x.2018.04032
DocumentCode:

Abstract:
Three different kinds of naturally restored forest land (bamboo forest, Chinese fir forest, and secondary broad-leaved forest) destroyed by major floods were selected for the determination of soil basic characters (physical properties, including soil particle composition and content of main nutrient components) with undestroyed forest land as a control. The fractal dimension D was calculated by using fractal theory. The relationship between fractal dimension and soil basic characters was discussed. The following results were noted: (1) Silt content comprised the largest proportion of the three kinds of forest soil. Fractal dimension ranged between 2.58 and 2.70. The fractal dimension of 0–10-cm soil layer was in the order of bamboo forest > Chinese fir forest > secondary broad-leaved forest and destroyed and naturally restored forest land > undestroyed forest land. Significant differences were observed between the naturally restored broadleaved forest and undestroyed forest land. (2) The soil bulk densities of the bamboo and secondary broadleaved forests showed that the naturally restored forest land was significantly larger than the undestroyed forest land, while the soil moisture content, capillary holding capacity, non-capillary porosity, and total porosity showed the opposite trend. No significant difference was observed in the physical characteristics of the Chinese fir forest under the two conditions. The soil nutrient content of each forest type decreased with increasing soil depth; thus, the naturally restored forest land had significantly lower soil nutrient content than the undestroyed forest land. The overall recovery status showed the following order: Chinese fir forest > secondary broad-leaved forest > bamboo forest. (3) Significant positive correlations were observed between soil fractal dimension and soil clay content, soil bulk density, and significant negative correlations were observed between soil fractal dimensions and organic matter, total nitrogen, soil water content, capillary water holding capacity, non-capillary porosity, and total capillary porosity. Therefore, a fractal dimension can objectively characterize the characteristics of soil structure and soil nutrients. The soil conditions of the destroyed and naturally restored forest lands have not yet reached the level of undestroyed forest land. With regard to the poor condition of the naturally restored bamboo forests, artificial afforestation can be properly carried out to optimize the community structure, thus improving soil conditions and promoting the recovery process of destroyed vegetation under disasters.

References

1. 肖广晗, 赵晓敏. 浅谈全球气候变化及应对策略[J]. 科技信息, 2013 (26): 453-453 [Xiao GH, Zhao XM. Discuss the global climate change and countermeasures briefly [J]. Sci Technol Inform, 2013 (26): 453-453]
2. 章德武, 谌宏伟. 山洪灾害致灾因子分析与防治措施[J]. 中国水运, 2011, 11 (3): 146-147 [Zhang DW, Chen HW. Analysis of hazard factors and prevention measures of flood disaster [J]. China Water Transport, 2011, 11 (3): 146-147]
3. Zhang JD, Hull V, Xu WH, Liu JG, Ouyang ZY, Huang JY, Wang XZ, Li RG. Impact of the 2008 Wenchuan earthquake on biodiversity and giant panda habitat in Wolong Nature Reserve, China [J]. Ecol Res, 2011, 26 (3): 523-531
4. Rieu M, Sposito G. Fractal fragmentation, soil porosity, and soil water properties: II. Applications [J]. Soil Sci Soc Am J, 1991, 55 (5): 1239-1244
5. Bartoli F, Philippy R, Doirisse M, Niquet S, Dubuit M. Structure and self-similarity in silty and sandy soils: the fractal approach [J]. Eur J Soil Sci, 2010, 42 (2): 167-185
6. Tyler SW, Wheat-craft SW. Application of fractal mathematics to soil water retention estimation[J]. Soil Sci Society Am J, 1989, 53 (4): 987-996
7. 李天杰, 赵烨, 张科利, 郑应顺, 王云. 土壤地理学[M]. 北京: 高等教育出版社, 2011: 302-307 [Li TJ, Zhao Y, Zhang KL, Zheng YS, Wang Y. Soil Geography [M]. Beijing: Higher Education Press, 2011: 302-307]
8. 张佳瑞, 王金满, 祝宇成, 李博, 王平. 分形理论在土壤学应用中的研究进展[J]. 土壤通报, 2017 (1): 221-228 [Zhang JR, Wang JM, Zhu YC, Li B, Wang P. Application of fractal theory on pedology: a review [J]. Chin J Soil Sci, 2017 (1): 221-228]
9. 李鹏, 徐康. 分形理论在土壤学研究中的应用进展[J]. 江西农业学报, 2013, 25 (4): 78-84 [Li P, Xu K. Application progress of fractal theory in pedology researches [J]. Acta Agric Jiangxi, 2013, 25 (4): 78-84]
10. 战海霞, 张光灿, 刘霞, 姚孝友. 沂蒙山林区不同植物群落的土壤颗粒分形与水分入渗特征[J]. 中国水土保持科学, 2009, 7 (1): 49-56 [Zhan HX, Zhang GC, Liu X, Yao XY. Fractal features of soil particle size distribution and infiltration characteristics under different vegetation communities in the forestland of Yimeng mountains area [J]. Sci Soil Water Conserv, 2009, 7 (1): 49-56]
11. 贾晓红, 李新荣, 李元寿. 干旱沙区植被恢复过程中土壤颗粒分形特征[J]. 地理研究, 2007, 26 (3): 518-525 [Jia XH, Li XR, Li YS. Fractal dimension of soil particle size distribution during the process of vegetation restoration in arid sand dune area [J]. Geogr Res, 2007, 26 (3): 518-525]
12. Deng YS, Cai CF, Xia D, Ding SW, Chen JZ. Fractal features of soil particle size distribution under different land-use patterns in the alluvial fans of collapsing gullies in the hilly granitic region of southern China [J]. PLoS ONE, 2017, 12 (3): e0173555
13. Peng G, Xiang N, Lü SQ, Zhang GC. Fractal characterization of soil particle-size distribution under different land-use patterns in the Yellow River delta wetland in China [J]. J Soils Sed, 2014, 14 (6): 1116-1122
14. Niu X, Gao P, Wang B, Liu Y. Fractal Characteristics of soil retention curve and particle size distribution with different vegetation types in mountain areas of northern China [J]. Int J Environ Res Pub Health, 2015, 12 (12): 15379-15389
15. 陈爱民, 邓浩俊, 严思维, 林勇明, 张广帅, 杜锟. 蒋家沟5种植被土壤分形特征与养分关系[J]. 山地学报, 2016, 34 (3): 290-296 [Chen AM, Deng HJ, Yan SW, Lin YM, Zhang GS, Du K. Fractal features of soil and their relation with soil fertility under five vegetation in Jiangjiagou gully [J]. Mount Res, 2016, 34 (3): 290-296]
16. Gao GL, Ding GD, Zhao YY, Wu B, Zhang YQ, Guo JB, Qin SG, Bao YF, Yu MH, Liu YD. Characterization of soil particle size distribution with a fractal model in the desertified regions of northern China [J]. Acta Geophys, 2016, 64 (1): 1-14
17. Saiedi N, Besalatpour AA, Shirani H, Dehaji PA, Esfandiarpour I, Faramarzi M. Aggregation and fractal dimension of aggregates formed in sand dunes stabilized by PistachioPAM and PistachioPVAc mulches [J]. Euro J Soil Sci, 2017, 68 (5): 783-791
18. Wang L, Mu Y, Zhang QF, Jia Z K. Effects of vegetation restoration on soil physical properties in the wind-water erosion region of the northern Loess Plateau of China [J]. Clean-Soil Air Water, 2012, 40 (1) : 7-15
19. 林春生. 闽南地区主要地质灾害 (滑坡)形成机理及防治对策[J]. 西部探矿工程, 2013, 25 (6): 130-132 [Lin C S. Formation mechanism and control measures of major geological disasters (landslides) in south Fujian [J]. West-China Expl Eng, 2013, 25 (6): 130-132]
20. 何圣嘉, 谢锦升, 杨智杰, 尹云锋, 李德成, 杨玉盛. 南方红壤丘陵区马尾松林下水土流失现状、成因及防治[J]. 中国水土保持科学, 2011, 9 (6): 65-70 [He SJ, Xie JS, Yang ZJ, Yin YF, Li DC, Yang YS. Status, causes and prevention of soil and water loss in Pinus massoniana woodland in hilly red soil region of southern China [J]. Sci Soil Water Conserv, 2011, 9 (6): 65-70]
21. 林勇明, 陈建忠, 吴承祯, 陈灿, 刘剑斌, 肖应忠, 林帅. 闽北森林对持续性强降雨作用的反馈与恢复对策[J]. 中国农学通报, 2011, 27 (8): 13-16 [Lin YM, Chen JZ, Wu CZ, Chen C, Liu JB, Xiao YZ, Lin S. The response of forest to persistent super rainstorm and its restoration countermeasures in northern Fujian province [J]. Chin Agric Sci Bull, 2011, 27 (8): 13-16]
22. 姚雄, 余坤勇, 刘健, 杨素萍, 何平, 邓洋波, 俞欣妍, 陈樟. 南方水土流失严重区的生态脆弱性时空演变[J]. 应用生态学报, 2016, 27 (3): 735-745 [Yao X, Yu KY, Liu J, Yang SP, He P, Deng YB, Yu XY, Chen Z. Spatial and temporal changes of the ecological vulnerability in a serious soil erosion area, Southern China [J]. Chin J Appl Ecol, 2016, 27 (3): 735-745]
23. 姚雄, 余坤勇, 曾琪, 杨玉洁, 张今朝, 刘健. 福建西部山地水土流失区土壤呼吸的空间异质性[J]. 环境科学, 2016, 37 (12): 4789-4799 [Yao X, Yu KY, Zen Q, Yang YJ, Zhang JZ, Liu J. Spatial heterogeneity of soil respiration in the soil erosion area of west mountains in Fujian province, China [J]. Environ Sci, 2016, 37 (12): 4789-4799]
24. 林狄显. 闽南山地3种典型植被类型土壤分形与养分特征[J]. 水土保持通报, 2017, 37 (3): 48-52 [Lin DX. Characteristics of soil fractal and nutrient under three typical vegetation types in mountainous region of southern Fujian province [J]. Bull Soil Water Conserv, 2017, 37 (3): 48-52]
25. 王长庭, 龙瑞军, 王根绪, 刘伟, 王启兰, 张莉, 吴鹏飞. 高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究[J]. 草业学报, 2010, 19 (6): 25-34 [Wang CT, Long RJ, Wang GX, Liu W, Wang QL, Zhang L, Wu PF. Relationship between plant communities, characters, soil physical and chemical properties, and soil microbiology in alpine meadows[J]. Acta Pratac Sin, 2010, 19 (6): 25-34]
26. 南平市生态与农业气象试验站. 南平市2010年7月天气趋势及生产建议[N]. 武夷生态与农业气象, 2010-7-1 (1) [Ecological and Agrometeorological Test Station of Nanping. The weather trends and production proposals in July 2010 of Nanping [N]. Wuyi Ecol Agric Meteorol, 2010-7-1 (1)]
27. 中国林业科学研究院林业研究所森林土壤研究室. LY /T 1237-1999 森林土壤有机质的测定及碳氮比的计算[S]. 北京: 中国标准出版社, 1999 [Research Institute of Forestry Chinese Academy of Forestry, Forest Soil Research Laboratory. LY /T 1237-1999 Determination of Organic Matter in Forest Soil and Calculation Carbon-nitrogen Ratio [S]. Beijing: China Standard Press, 1999]
28. 邓浩俊, 张广帅, 俞伟, 吴承祯, 洪伟, 林勇明. 震后植被受损治理区土壤基本性状和分形维数变化及其相关性分析[J]. 植物资源与环境学报, 2015, 24 (1): 12-18 [Deng HJ, Zhang GS, Yu W, Wu CZ, Hong W, Lin YM. Change in basic characters and fractal dimension of soil in destroyed vegetation management region after earthquake and their correlation analysis[J]. J Plant Resour Environ, 2015, 24 (1): 12-18]
29. Tyler SW, Wheatcraft SW. Fractal scaling of soil particle-size distributions: analysis and limitations [J]. Soil Sci Soc Am J, 1992, 56 (2): 362-369
30. 杨培岭, 罗远培. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38 (20): 1896-1899 [Yang P L, Luo Y P. Soil fractal characterization by weight distribution of particle size [J]. Chin Sci Bull, 1993, 38 (20): 1896-1899]
31. 黄冠华, 詹卫华. 土壤颗粒的分形特征及其应用[J]. 土壤学报, 2002, 39 (4): 490-497 [Huang GH, Zan WH. Fractal property of soil particle size distribution and its application [J]. Acta Pedolo Sin, 2002, 39 (4): 490-497]
32. 李红丽, 万玲玲, 董智, 刘振, 王丽英. 沙柳沙障对沙丘土壤颗粒粒径及分形维数的影响[J]. 土壤通报, 2012, 43 (3): 540-545 [Li HL, Wan LL, Dong Z, Liu Z, Wang LY. Effects of sand barriers of Salix psammophila on soil particle size and fractal dimension [J]. Chin J Soil Sci, 2012, 43 (3): 540-545]
33. 高强伟, 罗承德, 代斌, 刘丽, 马丹. “蜀南竹海”毛竹林土壤物理性质及其影响因子[J]. 林业工程学报, 2014, 28 (3): 52-55 [Gao QW, Luo CD, Dai B, Liu L, Ma D. Physical properties and the impact factors on soil under the bamboo forest in the South Sichuan Bamboo Forests area [J]. China Forest Sci Technol, 2014, 28 (3): 52-55]
a) Pérez-Bejarano A, Mataix-Solera J, Zornoza R, Guerrero C, Arcenegui V, Mataix-Beneyto J, Cano-Amat S. Influence of plant species on physical, chemical and biological soil properties in a Mediterranean forest soil [J]. Euro J For Res, 2010, 129 (1): 15-24
34. 姚姣转, 刘廷玺, 童新, 王天帅, 王海燕. 科尔沁沙地沙丘-草甸相间地土壤颗粒的分形特征[J]. 中国沙漠, 2016, 36 (2): 433-440 [Yao JZ, Liu TX, Tong X, Wang TS, Wang HY. Soil particle fractal dimension in the dune-meadow ecotone of the horqin sandy land [J]. J Desert Res, 2016, 36 (2): 433-440]
35. Ruiz TG, Zaragoza SR, Cerrato RF. Fertility islands around Prosopis laevigata and Pachycereus hollianus in the drylands of Zapotitlan Salinas, Mexico [J]. J Arid Environ, 2008, 72 (7): 1202-1212
36. 郭爽, 黄大庄, 周健, 牛小云, 高卓田, 池铭炎. 大广高速不同护坡植被土壤微生物及理化性质研究[J]. 应用与环境生物学报, 2018, 24 (4): 758-769 [Guo S, Huang DZ, Zhou J, Niu XY, Gao ZT, Chi MY. Study of soil microorganisms and physical-chemical properties on different slope protection vegetation in Daguang highway [J]. Chin J Appl Environ Biol, 2018, 24 (4): 758-769]
37. Li XG, Li FM, Zed R, Zhan Z Y, Bhupinderpal-Singh. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland [J]. Geoderma, 2007, 139 (1-2): 98-105
38. Zhao HL, Guo YR, Zhou RL, Drake S. The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China [J]. Geoderma, 2011, 160 (3): 367-372
39. 王景燕, 胡庭兴, 龚伟, 宫渊波, 罗承德. 川南坡地不同退耕模式对土壤团粒结构分形特征的影响[J]. 应用生态学报, 2010, 21 (6): 1410-1416 [Wang JY, Hu TX, Gong W, Gong YB, Luo CD. Fractal features of soil aggregate structure in slope farmland with different de-farming patterns in south Sichuan Province of China [J]. Chin J Appl Ecol, 2010, 21 (6): 1410-1416]
40. 田佳倩, 周志勇, 包彬, 孙建新. 农牧交错区草地利用方式导致的土壤颗粒组分变化及其对土壤碳氮含量的影响[J]. 植物生态学报, 2008, 32 (3): 601-610 [Tian JQ, Zhou ZY, Bao B, Sun JX. Variations of soil particle size distribution with land-use types and influences on soil organic carbon and nitrogen[J]. Chin J Plant Ecol, 2008, 32 (3): 601-610]
41. 陈小红, 段争虎, 谭明亮, 王勇. 沙漠化逆转过程中土壤颗粒分形维数的变化特征——以宁夏盐池县为例[J]. 干旱区研究, 2010, 27 (2): 297-302 [Chen XH, Duan ZH, Tan ML, Wang Y. Changes in fractal dimension of soil particle during reversal of desertification——a case study in Yanchi county, Ningxia Hui autonomous region [J]. Arid Zone Res, 2010, 27 (2): 297-302]
42. 谢贤健, 韦方强. 泥石流频发区不同盖度草地土壤颗粒的分形特征[J]. 水土保持学报, 2011, 25 (4): 202-206 [Xie XJ, Wei FQ. Characteristics of soil particle fractal dimension under different coverage grassland of the area with high-frequency debris flow [J]. J Soil Water Conserv, 2011, 25 (4): 202-206]
43. 王富, 贾志军, 董智, 李红丽, 甄宝艳, 孙明高, 张卫平. 不同生态修复措施下水库水源涵养区土壤粒径分布的分形特征[J]. 水土保持学报, 2009, 23 (5): 113-117 [Wang F, Jia ZJ, Dong Z, Li HL, Zhen BY, Sun GM, Zhang WP. Fractal features of soil particle size distribution on water source conservation areas under different measures of ecological restoration [J]. J Soil Water Conserv, 2009, 23 (5): 113-117]
44. 肖冬冬, 史正涛, 刘新有, 王连晓, 冯泽波 . 西双版纳橡胶林土壤颗粒体积分形维数特征[J]. 热带作物学报, 2017, 38 (5): 817-823 [Xiao DD, Shi ZT, Liu XY, Wang LX, Feng ZB. Fractal dimension of soil particle volume in rubber forest of Xishuangbanna [J]. Chin J Trop Crops, 2017, 38 (5): 817-823]
45.

Memo

Memo:
-
Last Update: 2019-02-25