|Table of Contents|

Effects of titanium ions on gene expression of Medicago sativa by comparative transcriptome analysis(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2019 01
Research Field:
Publishing date:


Effects of titanium ions on gene expression of Medicago sativa by comparative transcriptome analysis
WEI Chunmei1 2 LUAN Wei1 2 DAI Ya1 WANG Mingxiu1 TAO Xiang1 WANG Yan1 LI Caixia1 & MA Xinrong1**
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
titanium ion Medicago sativa gene differential expression ribosomal protein heat shock protein pathogenesis-related gene WRKY gene

Titanium ions promote plant growth and increase crop yield significantly, but the mechanism remains an enigma. In this study, we determined the effect of titanium ions on gene expression in Medicago sativa using Illumina high-throughput RNA-sequencing. After 24 h of foliar-sprayed with a titanium ion solution (0, 8 mg/L), the leaves of M. sativa were sampled for transcriptome sequencing. The resulting sequences were mapped onto the reference genome of Medicago truncatula, leading to the annotation of 28 437 genes. The differential expression analysis showed that 482 genes expressed differentially, including 247 up-regulated and 235 down-regulated upon 8 mg/L titanium ion solution compared with the control. Further analysis showed that the genes encoding ribosomal proteins (18), heat shock proteins (7) and transcription factor WRKYs (5) were mainly up-regulated. Although the number of up-regulated genes (11) associated with disease resistance was less than that of down-regulated ones (22), the total expression abundance of these genes increased from 12 563 to 16 197 FPKM. In addition, the down-regulated genes mainly included cytochrome P450 family genes (2 up-regulated, 7 down-regulated). It was speculated that titanium ions act as a stress signal to stimulate plants to respond, resulting in gene expression alterations that promote plant growth and improves the adaptability to adverse conditions. This study lays the foundation for revealing the regulatory mechanism of titanium ions on plant growth and provides a basis for its further application in agricultural production.


1. 左喆瑜. 农户对环境友好型肥料的选择行为研究——以有机肥及控释肥为例[J]. 农村经济, 2015 (10): 72-77 [Zuo ZY, Study on farmers’ selection behavior for environmentally friendly fertilizers: a case study of organic fertilizers and controlled release fertilizers. Rural Econ, 2015 (10): 72-77]
2. Tim US, Jolly R. Evaluating agricultural nonpoint-source pollution using integrated geographic information systems and hydrologic/water quality model [J]. J Environ Qual, 1994, 23 (1): 25-35
3. 孙金华, 朱乾德, 颜志俊, 陆海明, 王会容. AGNPS系列模型研究与应用综述[J]. 水科学进展, 2009, 20 (6): 876-884 [Sun JH, Zhu QD, Yan ZJ, Lu HM, Wang HR. A review of research and application of AGNPS model [J]. Adv Water Sci, 2009, 20 (6): 876-884]
4. Jelks B. Titanium, its occurrence, chemistry, and technology [J]. Soil Sci, 1950, 70 (70): 414
5. Bordbar H, Yousefi AA, Abedini H. Production of titanium tetrachloride (TiCl4) from titanium ores: a review [J]. 2017, DOI: 10.22063/poj.2017.1453
6. Noort RV. Titanium: the implant material of today [J]. J Mat Sci, 1987, 22 (11): 3801-3811
7. Hrub? M, Cígler P, Kuzel S. Contribution to understanding the mechanism of titanium action in plant [J]. J Plant Nutr, 2002, 25 (3): 577-598
8. Kalinowski K, Wadas W. Effect of Tytanit? on the yield and yield components of very early-maturing potato cultivars [J]. J Central Eur Agric, 2017, 18 (2): 441-459
9. 范秀菊. 钛的氧化还原特性及其在植物生化过程中的作用[J]. 中国土壤与肥料, 2012 (5): 1-4 [Fan XJ. Redox properties of titanium and its action on biochemical process in plants [J]. China Soils Fert, 2012 (5): 1-4]
10. Pais I. The biological importance of titanium [J]. J Plant Nutr, 1983, 6 (1): 3-131
11. Carvajal M, Alcaraz CF. Why titanium is a beneficial element for plants [J]. J Plant Nutr, 1998, 21 (4): 655-664
12. 张启峰, 张世平, 张其德, 卢从明, 万春候. 钛对小麦幼苗光合特性的影响[J]. 植物营养与肥料学报, 1996 (1): 84-90 [Zhang QF, Zhang SP, Zhang QD, Lu CM, Wan CH. Effect of titanium on photosynthetic characteristics of wheat seedlings [J]. Plant Nutr Fertil Sci, 1996 (1): 84-90]
13. Zhang X, Shang C, Xiao S. Continuous method and production device for producing hydrolysis-resistant stable 368 ionic titanium: US, US 8308840 B2 [P]. 2012
14. 巫维杰, 吴勇, 乔欣欣, 何密. 不同浓度抗水解稳定离子钛(ASIT)对3种高寒牧草种子发芽率的影响[J]. 南方农业, 2015 (3): 24-25 [Wu WJ, Wu Y, Qiao XX, He M. Effects of different concentrations of hydrolysis-resistant stable ion titanium (ASIT) on seed germination rate of three alpine forages. S Agric, 2015 (3): 24-25]
15. 万军, 姜清治, 张文建, 杨有成, 张廷珍, 魏强, 张赵鹏. 抗水解稳定离子钛对烤烟生长发育和品质的影响[J]. 安徽农业科学, 2017, 45 (11): 35-38 [Wan J, Jiang QZ, Zhang WJ, Yang YC, Zhang TZ, Wei Q, Zhang ZP. Effects of hydrolytic stability titanium ion on growth and quality of flue-cured tobacco [J]. J Anhui Agric, 2017, 45 (11): 35-38]
16. 邢小军, 张建慧, 王勇. 离子钛对烟苗生长和烟叶产质量的影响[J]. 中国烟草科学, 2010, 31 (6): 38-40 [Xing XJ, Zhang JH, Wang Y. Effect of ionic titanium on seedling, yield and quality of flue-cured tobacco leaf [J]. Chin Tob Sci, 2010, 31 (6): 38-40]
17. 徐伦, 张光跃. 抗水解稳定离子钛在大豆上的应用[J]. 西昌学院学报(自然科学版), 2010, 24 (2): 15-17 [Xu L, Zhang GY. The application of hydrolytic stable ions titanium in soybean [J]. J Xichang Coll (Nat Sci Ed), 2010, 24 (2): 15-17]
18. 杨青川, 康俊梅, 张铁军, 刘凤岐, 龙瑞才, 孙彦. 苜蓿种质资源的分布、育种与利用[J]. 科学通报, 2016 (2): 261-270 [Yang QC, Kang JM, Zhang TJ, Liu FQ, Long RC, Sun Y. Distribution, breeding and utilization of alfalfa germplasm resources [J]. Chin Sci Bull, 2016 (2): 261-270]
19. Tu X, Liu Z, Zhang Z. Comparative transcriptomic analysis of resistant and susceptible alfalfa cultivars (Medicago sativa L.) after thrips infestation [J]. BMC Genomics, 2018, 19 (1): DOI 10.1186/s12864-018-4495-2
20. 双宝, 韩英鹏, 李明, 李文滨. 真核细胞翻译起始因子5A(eIF5A)研究进展[J]. 东北农业大学学报, 2010, 41 (8): 156-160 [Shuang B, Han YP, Li M, Li WB. Progress of eukaryotic translation initiation factor 5A(eIF5A) [J]. J Northeast Agric Univ, 2010, 41 (8): 156-160]
21. Costa V, Angelini C, De Feis I, Ciccodicola A. Uncovering the complexity of transcriptomes with RNA-Seq [J]. J Biomed Biotechnol, 2010, 2010: DOI 10.1155/2010/853916.
22. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics [J]. Nat Rev Genetics, 2009, 10 (1): 57-63
23. Pertea M, Kim D, Pertea GM, Leek JT, Salzberq SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown [J]. Nat Protocols, 2016, 11 (9): 1650
24. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements [J]. Nat Methods, 2015, 12 (4): 357-360
25. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2 [J]. Nat Methods, 2011, 9 (4): 357-359
26. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome [J]. BMC Bioinformatics, 2011, 12 (1): 323
27. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data [J]. Bioinformatics, 2009, 26 (1): 139-140
28. Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias [J]. Genome Biol, 2010, 11 (2): R14
29. Minoru K, Michihiro A, Susumu G, Masahiro H, Mika H, Masumi I, Toshiaki K, Shuichi K, Shujiro O, Toshiaki T, Yoshihiro Y. KEGG for linking genomes to life and the environment [J]. Nucleic Acids Res, 2008, 36: D480-D484
30. 王勇刚, 曾富华, 吴志华, 罗泽民. 植物诱导抗病与病程相关蛋白[J]. 湖南农业大学学报(自然科学版), 2002, 28 (2): 177-182 [Wang YJ, Zeng FH, Wu ZH, Luo ZM. Relationship between induced disease resistance and pathogenesis-related protein in plant [J]. J Hunan Agric Univ (Nat Sci), 2002, 28 (2): 177-182]
31. Ghosh S. Triterpene structural diversification by plant cytochrome P450 enzymes [J]. Front Plant Sci, 2017, 8: DOI 10.3389/fpls.2017.01886
32. 靳聪聪, 侯名语, 潘延云. 拟南芥核糖体蛋白生物学功能研究进展[J]. 植物生理学报, 2018, 54 (2): 203-212 [Jin CC, Hou MY, Pan YY. Research progress of ribosomal protein function in Arabidopsis thaliana [J]. Plant Physiol J, 2018, 54 (2): 203-212]
33. 邵玲, 陈向荣. 热激蛋白与植物的抗逆性[J]. 北方园艺, 2005 (3): 73-74 [Shao L, Chen XR. Heat shock protein and plant stress resistance. N Horticult, 2005 (3): 73-74]
34. 栗振义, 龙瑞才, 张铁军, 杨青川, 康俊梅. 植物热激蛋白研究进展[J]. 生物技术通报, 2016, 32 (2): 7-13 [Li ZY, Long RC, Zhang TJ, Yang QC, Kang JM. Research progress on plant heat shock protein [J]. Biotechnol Bull, 2016, 32 (2): 7-13]
35. 江腾, 林勇祥, 刘雪, 江海洋, 朱苏文. 苜蓿全基因组WRKY转录因子基因的分析[J]. 草业学报, 2011, 20 (3): 211-218 [Jiang T, Lin YX, Liu X, Jiang HY, Zhu SW. Genome-wide analysis of the WRKY transcription factor family in Medicago truncatula [J]. Acta Pratacult Sin, 2011, 20 (3): 211-218]
36. 刘守梅, 孙玉强, 王慧中. 植物MYB转录因子研究[J]. 杭州师范大学学报(自然科学版), 2012, 11 (2): 146-150 [Liu SM, Sun YQ, Wang HZ. Researches on plant MYB transcription factors [J]. J Hangzhou Norm Univ (Nat Sci Ed), 2012, 11 (2): 146-150]
37. Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks [J]. J Exp Bot, 2012, 63 (4): 1593
38. Akita M, Valkonen JP. A novel gene family in moss (Physcomitrella patens) shows sequence homology and a phylogenetic relationship with the TIR-NBS class of plant disease resistance genes [J]. J Mol Evol, 2002, 55 (5): 595-605
39. 文志丰. 中国野生葡萄编码NB-ARC结构的抗白粉病基因克隆及功能分析[D]. 杨凌: 西北农林科技大学, 2016 [Wen ZF. Cloning and functional analysis of NB-ARC encoding putative disease resistant genes to powdery mildew from Chinese wild vitis [D]. Yangling: Northwest A&F University, 2016]
40. 冯蕾, 张海文, 黄荣峰. 植物LRR类受体蛋白激酶的研究进展[J]. 中国农业科技导报, 2012, 14 (6): 43-48 [Feng L, Zhang HW, Huang RY. Research progress on LRR receptor-like protein kinase in plant [J]. J Agric Sci Technol, 2012, 14 (6): 43-48]
41. 许华夏, 李培军, 刘宛, 宋玉芳. 生物细胞色素P450的研究进展[J]. 农业环境科学学报, 2002, 21 (2): 188-191 [Xu HX, Li PJ, Liu W, Song YF. Research process of cytochrome P450 in organisms [J]. Agro-environ Prot, 2002, 21(2): 188-191]
42. 贺丽虹, 赵淑娟, 胡之璧. 植物细胞色素P450基因与功能研究进展[J]. 药物生物技术, 2008, 15(2): 142-147 [He LH, Zhao SJ, Hu ZB. Gene and function research progress of plant cytochrome P450s [J]. Pharm Biotechnol, 2008, 15 (2): 142-147]
43. Paradies J, Crudass J, Mackay F, Yellowlees LJ, Montgomery J, Parsons S, Oswald I, Robertson N, Sadler PJ. Photogeneration of titanium(Ⅲ) from titanium (Ⅳ) citrate in aqueous solution [J]. J Inorg Biochem, 2006, 100 (7): 1260-1264
44. Khan ME, Khan MM, Min BK, Cho MH. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation [J]. Sci Rep, 2018, 8 (1): DOI 10.1038/s41598-018-19617-2
45. 范延芬, 魏春梅, 李彩侠, 王蕾, 李鑫雨, 马欣荣. 光能变价离子钛对多种细菌的抑制作用[J]. 应用与环境生物学报, 2016, 22 (6): 1150-1155 [Fan YF, Wei CM, Li CX, Wang L, Li XY, Ma XR. Antimicrobial activity of titanium ion of variable valence with light energy [J]. Chin J Appl Environ Biol, 2016, 22 (6): 1150-1155]
46. Li CX, Fan YF, Luan W, Dai Y, Wang MX, Wei CM, Wang Y, Tao X, Mao P, Ma XR. Titanium ions inhibit the bacteria in vase solutions of freshly cut Gerbera and extend the flower longevity. Microb Ecol, 2018: doi. org/10.1007/s00248-018-1273-2


Last Update: 2019-02-25