|Table of Contents|

Responses of starch biosynthesis-related genes to nutrition starvation in Landoltia punctata(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2019 01
Research Field:
Publishing date:


Responses of starch biosynthesis-related genes to nutrition starvation in Landoltia punctata
WANG Mingxiu1 2 LUAN Wei2 MA Xinrong2 TAO Xiang2** & ZHAO Yun1**
1 College of Life Sciences, Sichuan University, Chengdu 610041, China 2 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
Landoltia punctata nutrient starvation starch biosynthesis gene transcriptome qRT-PCR

Landoltia punctata can accumulate high starch content, up to > 45% (dry weight) in 7 days, upon nutrient starvation. This study aimed to identify the genes related to starch metabolism and their expression patterns in response to starvation in L. punctata. The starvation-stress response transcriptome of L. punctata was carefully analyzed and used for the identification and quantification of starch metabolism-related genes. A quantitative real time-polymerase chain reaction (qRT-PCR) was performed to verify the quantification results. The results showed the presence of five LpAGP, two LpGBSS, two LpSSS, five LpSBE, seven LpISA, and one LpPUL genes. The RNA-Seq quantification results showed that LpAGPS1, LpAGPL2, LpAGPL3, LpGBSSI, LpGBSSII, LpSBEI-1, LpISA3, and LpPUL1 were all up-regulated by nutrient starvation. The qRT-PCR results of 16 starch metabolism key genes verified that most of them were up-regulated by starvation, while the expression of α-amylase and β-amylase were down-regulated. The opposite expression change patterns of starch biosynthesis- and degradation-related key genes resulted in the accumulation of starch. This study paves the way for further studies on elucidating the function and mechanism starch metabolism-related genes in L. punctata.


1 Preiss J, Ball K, Smith-White B, Iglesias A, Kakefuda G, Li L. Starch biosynthesis and its regulation [J]. Biochem Soc Trans, 1991, 19 (3): 539-547
2 Zeeman SC, Kossmann J, Smith AM. Starch: its metabolism, evolution, and biotechnological modification in plants [J]. Annu Rev Plant Biol, 2010, 61 (1): 209-234
3 Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue [J]. Plant Cell Physiol, 2002, 43 (7): 718-725
4 Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ. Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield [J]. Proc Natl Acad Sci USA, 2002, 99 (3): 1724-1729
5 Jeon JS, Ryoo N, Hahn TR, Walia H, Nakamura Y. Starch biosynthesis in cereal endosperm [J]. Plant Physiol Biochem, 2010, 48 (6): 383-392
6 Datko AH, Mudd SH, Giovanelli J. Lemna paucicostata Hegelm. 6746: development of standardized growth conditions suitable for biochemical experimentation [J]. Plant Physiol, 1980, 65 (5): 906-912
7 Skillicorn P, Spira W, Journey W. Duckweed aquaculture: a new aquatic farming system for developing countries [M]. Washington: World Bank, 1993: 81-124
8 Tao X, Fang Y, Xiao Y, Jin YL, Ma XR, Zhao Y, He KZ, Zhao H, Wang HY. Comparative transcriptome analysis to investigate the high starch accumulation of duckweed (Landoltia punctata) under nutrient starvation [J]. Biotechnol Biofuel, 2013, 6: 72
9 Liu Y, Fang Y, Huang M, Jin Y, Sun J, Tao X, Zhang G, He K, Zhao Y, Zhao H. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) II: transcriptome alterations of pathways involved in carbohydrate metabolism and endogenous hormone crosstalk [J]. Biotechnol Biofuel, 2015, 8: 64
10 Landolt E, Kandeler R. Biosystematics Investigation in the Family of Duckweeds (Lemnacea) (Vol. 4). The Family of the Lemnacea: A Monographic Study [M]. Zurich: Veroff Geobot Inst ETH, 1987
11. Blazey EB, McClure JW. The distribution and taxonomic significance of lignin in the Lemnaceae [J]. Am J Bot, 1968, 55: 1240-1245
12 El-Shafai SA, El-Gohary FA, Nasr FA, van der Steen NP, Gijzen HJ. Nutrient recovery from domestic wastewater using a UASB-duckweed ponds system [J]. Bioresource Technol, 2007, 98 (4): 798-807
13 Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence [J]. J Mol Biol, 2000, 300 (4): 1005-1016
14 Emanuelsson O, Brunak S, von Heijne G, Nielsen H. Locating proteins in the cell using TargetP, SignalP and related tools [J]. Nat Protoc, 2007, 2 (4): 953-971
15 Emanuelsson O, Nielsen H, Von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites [J]. Protein Sci, 1999, 8 (5): 978-984
16 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0 [J]. Mol Biol Evol, 2013, 30 (12): 2725-2729
17 Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation [J]. Bioinformatics, 2007, 23 (1): 127-128
18 Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nat Biotechnol, 2011, 29 (7): 644-652
19 Liu Y, Fang Y, Huang M, Jin Y, Sun J, Tao X, Zhang G, He K, Zhao Y, Zhao H. Uniconazole-induced starch accumulation in the bioenergy crop duckweed (Landoltia punctata) I: transcriptome analysis of the effects of uniconazole on chlorophyll and endogenous hormone biosynthesis [J]. Biotechnol Biofuel, 2015, 8: 57
20 Wang W, Haberer G, Gundlach H, Glasser C, Nussbaumer T, Luo MC, Lomsadze A, Borodovsky M, Kerstetter RA, Shanklin J, Byrant DW, Mockler TC, Appenroth KJ, Grimwood J, Jenkins J, Chow J, Choi C, Adam C, Cao XH, Fuchs J, Schubert I, Rokhsar D, Schmutz J, Michael TP, Mayer KF, Messing J. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle [J]. Nat Commun, 2014, 5: 3311
21 Wang W, Messing J. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed) [J]. BMC Plant Biol, 2012, 12: 5
22 Smart CC, Trewavas AJ. Abscisic-acid-induced turion formation in Spirodela polyrrhiza L III. Specific changes in protein synthesis and translatable RNA during turion development [J]. Plant Cell Environ, 1984, 7 (2): 121-132
23 Liu Y, Wang XH, Fang Y, Huang MJ, Chen XY, Zhang Y, Zhao H. The effects of photoperiod and nutrition on duckweed (Landoltia punctata) growth and starch accumulation [J]. Ind Crop Prod, 2018, 115: 243-249
24 Zhao Z, Shi HJ, Wang ML, Cui L, Zhao H, Zhao Y. Effect of nitrogen and phosphorus deficiency on transcriptional regulation of genes encoding key enzymes of starch metabolism in duckweed (Landoltia punctata) [J]. Plant Physiol Bioch, 2015, 86: 72-81
25 James MG, Robertson DS, Myers AM. Characterization of the maize gene sugary1, a determinant of starch composition in kernels [J]. Plant Cell, 1995, 7 (4): 417-429
26 Zeeman SC, Umemoto T, Lue W-L, Au-Yeung P, Martin C, Smith AM, Chen J. A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen [J]. Plant Cell, 1998, 10 (10): 1699-1711
27 Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis [J]. Plant Physiol, 2001, 126 (2): 524-535
28 Buer CS, Djordjevic MA. Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana [J]. J Exp Bot, 2009, 60 (3): 751-763
29 Martin C, Gerats T. Control of pigment biosynthesis genes during petal development [J]. Plant Cell, 1993, 5 (10): 1253-1264
30 Brunetti C, Di Ferdinando M, Fini A, Pollastri S, Tattini M. Flavonoids as antioxidants and developmental regulators: relative significance in plants and humans [J]. Int J Mol Sci, 2013, 14 (2): 3540-3555
31 Tao X, Fang Y, Huang MJ, Xiao Y, Liu Y, Ma XR, Zhao H. High flavonoid accompanied with high starch accumulation triggered by nutrient starvation in bioenergy crop duckweed (Landoltia punctata) [J]. BMC Genomics, 2017, 18: 166
32 李琪, 方扬, 许亚良, 赖烦, 苏羽华, 靳艳玲, 赵海. 少根紫萍对微污染地表水的净化及淀粉积累[J]. 应用与环境生物学报, 2018, 24 (6): 1324-1329 [Li Q, Fang Y, Xu YL, Lai F, Su YH, Jin YL, Zhao H. Duckweed Landoltia punctate purifying micro-polluted surface water and producing starch [J]. Chin J Appl Environ Biol, 2018, 24 (6): 1324-1329]
33 陈晓仪, 杨千叶, 赵琦. 不同光周期对浮萍生长及淀粉积累的影响[J]. 北方园艺, 2017, 22: 50-54 [Chen XY, Yang QY, Zhao. Effective of different photoperiod on the growth and starch accumulation of duckweed [J]. North Horticult, 2017, 22: 50-54]


Last Update: 2019-02-25