|Table of Contents|

Fermentation optimization of oosporein produced by Chaetomium cupreum CH21-20(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2019 01
Page:
143-150
Research Field:
Articles
Publishing date:

Info

Title:
Fermentation optimization of oosporein produced by Chaetomium cupreum CH21-20
Author(s):
GOU Xuelei1 2 ZHONG Juan1** ZHOU Jinyan1 SHU Dan1 ZHAO Jie1 2 YANG Jie1 & TAN Hong1**
1 Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China
Keywords:
Chaetomium cupreum oosporein fermentation parameter composition of culture media response surface methodology
CLC:
Q936 : TQ920
PACS:
DOI:
10.19675/j.cnki.1006-687x.2018.03043
DocumentCode:

Abstract:
Oosporein is a dibenzoquinone pigment with broad-spectrum antimicrobial activities. The oosporein hyper-producing mutant strain Chaetomium cupreum CH21-20 was obtained via genetic modification. We studied the effects of the fermentation parameters on the production of oosporein in the fermentation process of CH21-20. The results showed that the optimal values of the fermentation parameters were: inoculum size 3%, initial pH 7.0, culture volume 60 mL per 250 mL shake flask, culture temperature 24 ℃, and rotation ratio 180 r/min. The results of the experiments for screening carbon and nitrogen sources and inorganic salts revealed that 15.0 g/L sucrose, 5.0 g/L protein powder, and 0.5 g/L sodium chloride had significant influences on the yield of oosporein. Accordingly, a Box-Behnken Design of three factors and three levels was designed for the production of oosporein as a response. The highest production of oosporein was 2547 μg/mL when the concentrations of sucrose, protein powder, and sodium chloride were 15.63 g/L, 5.22 g/L, and 0.53 g/L, respectively, after response surface prediction. The terminal production of oosporein reached 2478 μg/mL after the confirmatory experiment, enhanced by almost 56.14% compared to the production before the conditions were optimized. Thus, in the present study, stable and high-producing fermentation parameters of oosporein were determined in the shake-flask.

References

1 Takeshita H, Anchel M. Production of oosporein and its leuco form by Basidiomycete species [J]. Science, 1965, 147 (3654): 152-153 2 Kogl F, Van Wessem GC. Analysis concerning pigments of fungi XIV: concerning oosporein, the pigment of Oospora colorans van Beyma [J]. Recl Trav Chim Pays Bas, 1944, 63: 5-24 3 Abendstein D, Pernfuss B, Strasser H. Evaluation of Beauveria brongniartii and its metabolite oosporein regarding phytotoxicity on seed potatoes [J]. Biocontrol Sci Technol, 2000, 10 (6): 789-796 4 Vining LC, Kelleher WJ, Schwarting AE. Oosporein production by a strain of Beauveria bassiana originally identified as Amanita muscaria [J]. Can J Microbiol, 1962, 8 (6): 931-933 5 Divekar PV, Haskins RH, Vining LC. Oosporein from an Acremonium sp. [J]. Can J Chem, 1959, 37 (12): 2097-2099 6 Cole RJ, Kirksey JW, Cutler HG, Davis EE. Toxic effects of oosporein from Chaetomium trilaterale [J]. J Agric Food Chem, 1974, 22 (3): 517-520 7 Lloyd G, Robertson A, Sankey GB. The chemistry of fungi. part XXV. oosporein, a metabolite of Chaetomium aureum chivers [J]. J Chem Soc (Resumed), 1955: 2163-2165 8 Mao BZ, Huang C, Yang GM. Separation and determination of the bioactivity of oosporein from Chaetomium cupreum [J]. Afr J Biotechnol, 2010, 9 (9): 5955-5961 9 He G, Yan J, Wu XY, Gou XJ, Li WC. Oosporein from Tremella fuciformis [J]. Acta Crystallogr Sect E: Struct Rep Online, 2012, 68 (4): o1231-o1231 10 Feng P, Shang Y, Cen K, Wang C. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity [J]. Proc Natl Acad Sci USA, 2015, 112 (39): 11365-11370 11 Klingen I, Meadow R, Aandal T. Mortality of Delia floralis, Galleria mellonella and Mamestra brassicae treated with insect pathogenic hyphomycetous fungi [J]. J Appl Entomol, 2002, 126 (5): 231-237 12 Labbe RM, Cloutier C, Brodeur J. Prey selection by Dicyphus hesperus of infected or parasitized greenhouse whitefly [J]. Biocontrol Sci Technol, 2006, 16 (5): 485-494 13 Favilla M, Macchia L, Gallo A, Altomare C. Toxicity assessment of metabolites of fungal biocontrol agents using two different (Artemia salina and Daphnia magna) invertebrate bioassays [J]. Food Chem Toxicol, 2006, 44 (11): 1922-1931 14 Alurappa R, Bojegowda MRM, Kumar V, Mallesh NK, Chowdappa S. Characterisation and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. [J]. Nat Prod Res, 2014, 28 (23): 2217-2220 15 Terry BJ, Liu WC, Cianci CW, Proszynski E, Fernandes P, Bush K, Meyers E. Inhibition of herpes simplex virus type 1 DNA polymerase by the natural product oosporein [J]. J Antibiot, 1992, 45 (2): 286-288 16 Strasser H, Vey A, Butt TM. Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species? [J]. Biocontrol Sci Technol, 2000, 10 (6): 717-735 17 Strasser H, Abendstein D, Stuppner H. Monitoring the distribution of secondary metabolites produced by the entomogenous fungus Beauveria brongniartii with particular reference to oosporein [J]. Mycol Res, 2000, 104 (10): 1227-1233 18 Basyouni SHE, Brewer D, Vining LC. Pigments of the genus Beauveria [J]. Can J Bot, 1968, 46 (4): 441-448 19 Michelitsch A, Rückert U, Rittmannsberger A, Seger C, Strasser H, Likussar W. Accurate determination of oosporein in fungal culture broth by differential pulse polarography [J]. J Agric Food Chem, 2004, 52 (6): 1423-1426 20 卢梦梦, 潘清灵, 李赛妮, 王磊, 郝再彬, 章卫民. 深红虫草高产卵孢菌素的培养基筛选及发酵条件优化[J]. 菌物学报, 2017, 36 (4): 503-511 [Lu MM, Pan QL, Li SN, Wang L, Hao ZB, Zhang WM. Screening of culture medium and optimization of fermentation condition for oosporein production of Cordyceps cardinalis strain [J]. Mygosystema, 2017, 36 (4): 503-511] 21 何海清, 杨莉娜, 周金燕, 谭红. 紫外分光光度法和HPLC法测定角毛壳菌CH-1发酵液中卵孢菌素含量的比较研究[J]. 中国抗生素杂志, 2015, 40 (8): 593-598 [He HQ, Yang LN, Zhou JY, Tan H. Comparison of UV spectrophotometry and HPLC on quantitative determination of oosporein in the broth of Chaetomium cupreum CH-1 [J]. Chin J Antibiot, 2015, 40 (8): 593-598] 22 El Basyouni SH, Vining LC. Biosynthesis of oosporein in Beauveria bassiana (Bals.) Vuill [J]. Can J Biochem, 1966, 44 (5): 557-565 23 Timoumi A, Guillouet SE, Molina-Jouve C, Fillaudeau L, Corret N. Impacts of environmental conditions on product formation and morphology of Yarrowia lipolytica [J]. Appl Microbiol Biotechnol, 2018, 102 (9): 3831-3848 24 Guan N, Li J, Shin HD, Du G, Chen J, Liu L. Microbial response to environmental stresses: from fundamental mechanisms to practical applications[J]. Appl Microbiol Biotechnol, 2017, 101(10): 3991-4008 25 MacLeod DM. Investigations on the genera Beauveria Vuill, and Tritirachium Limber [J]. Can J Bot, 1954, 32 (6): 818-890

Memo

Memo:
-
Last Update: 2019-02-25