|Table of Contents|

Gender differences of Marchantia polymorpha in tolerance to acid rain stress(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2019 01
Research Field:
Publishing date:


Gender differences of Marchantia polymorpha in tolerance to acid rain stress
CHAI Shuli CHEN Yafei FAN Xiaoxu DU Zexuan & WANG Li**
Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
acid rain stress Marchantia polymorpha dioecy fluorescence kinetic parameter antioxidase

Acid rain (AR) is a major environmental factor that significantly limits plants growth and leads to vegetation destruction. Plants have evolved elaborate and intricate mechanisms to achieve optimal adaption to AR stress. They can respond to AR at multiple levels, including individual, cellular, and physiological and biochemical processes. However, the responses of dioecious bryophytes to AR stress and the differences in tolerance to AR between female and male gametophytes are not fully understood. In this study, thalli of Marchantia polymorpha were treated with different pH levels of AR, and gender differences in tolerance to AR were compared. The results showed that: (1) Compared with the control of pH 6.8, AR caused the visible symptoms of injury to female and male gametophytes. The survival rate (%), chlorophyll content, maximum PSII efficiency (Fv/Fm), and actual PSII photochemical quantum yield (Yield) decreased, while the malondialdehyde (MDA) content, antioxidant enzyme activities (POD, SOD, and CAT), initial fluorescence (F0), and non-photochemical quenching coefficient (NPQ) increased. (2) Compared with the control, the above-mentioned parameters under moderate (pH 4.0) and severe (pH 2.5) levels of AR were significantly different. (3) Under moderate level, female gametophytes displayed a lower survival rate, antioxidant enzyme activities, chlorophyll content, and fluorescence parameters and a higher MDA content than that of male gametophytes. In summary, AR causes severe damages to the individual, photosynthetic system, and cellular membrane system of M. polymorpha, and the damage degree is different between female and male gametophytes. Furthermore, male gametophytes have higher resistance to chlorosis and antioxidation than female gametophytes under AR stress, indicating their higher tolerance to AR stress. These conclusions will lead to a better understanding of the ecological adaptability of dioecious plants and adaptation AR effects on vegetation.


1 邓伟, 刘荣花, 熊杰伟, 陈海波, 田宏伟, 杜子璇. 当前国内酸雨研究进展[J]. 气象与环境科学, 2009, 32 (1): 82-87 [Deng W, Liu RH, Xiong JW, Chen HB, Tian HW, Du ZX. Research progress of acid rain in China [J]. Meteorol Environ Sci, 2009, 32 (1): 82-87]
2 Abbasi T, Poornima P, Kannadasan T, Abbasi SA. Acid rain: past, present, and future [J]. Int J Environ Engineer, 2013, 5 (3): 229-272
3 周晓得, 徐志方, 刘文景, 武瑶, 赵童, 蒋浩. 中国西南酸雨区降水化学特征研究进展[J]. 环境科学, 2017, 10: 4438-4446 [Zhou XD, Xu ZF, Liu WJ, Wu Y, Zhao T, Jiang H. Progress in the studies of precipitation chemistry in acid rain areas of southwest China [J]. Environ Sci, 2017, 10: 4438-4446]
4 魏菱, 邓新华, 刘仲秋. 四川省酸雨污染现状及趋势分析[J]. 四川环境, 2001, 20 (4): 63-65 [Wei L, Deng XH, Liu ZQ. Analysis of the situation of acid rain in Sichuan Province and its tendency [J]. Sichuan Environ, 2001, 20 (4): 63-65]
5 Wu X, Liang CJ. Enhancing tolerance of rice (Oryza sativa ) to simulated acid rain by exogenous abscisic acid [J]. Environ Sci Pollut Res, 2017, 24 (5): 4860-4870
6 王玮. 模拟酸雨处理的青菜显微和亚显微结构观察及部分生理指标测定[J]. 环境科学, 1988, 9 (3): 1-12 [Wang W. Observation of microstructure and sub-microstructure of Chinese cabbage treated by simulated acid rain and determination of some physiological indexes [J]. Environ Sci, 1988, 9 (3): 1-12]
7 肖艳, 黄建昌. 模拟酸雨对3种果树的胁迫效应[J]. 热带亚热带植物学报, 2004, 12 (4): 351-354 [Xiao Y, Huang JC. Stress effects of simulated acid rain on three fruit specie [J]. J Trop Subtrop Bot, 2004, 12 (4): 351-354]
8 曹同. 苔藓植物对环境的指示与响应[M]. 北京: 科学出版社, 2014 [Cao T. Indication and Response of Bryophytes to the Environment [M]. Beijing: Science Press, 2014]
9 Steere WC, Schuster RM. New manual of bryology [J]. J Ecol, 1984, 87 (3): doi 10.2307/3242815
10 Dawson TE, Bliss LC. Patterns of water use and the tissue water relations in the dioecious shrub, Salix arctica: the physiological basis for habitat partitioning between the sexes [J]. Oecologia, 1989, 79 (3): 332-343
11 陈娟, 李春阳. 环境胁迫下雌雄异株植物的性别响应差异及竞争关系[J]. 应用与环境生物学报, 2014, 20 (4): 743-750 [Chen J, Li CY. Sex-specific responses to environmental stresses and sexual competition of dioecious plants [J]. Chin J Appl Environ Biol, 2014, 20 (4): 743-750]
12 Bram MR, Quinn JA. Sex expression, sex-specific traits, and the effects of salinity on growth and reproduction of Amaranthus cannabinus (Amaranthaceae), a dioecious annual [J]. Am J Bot, 2000, 87: 1609-1618
13 Chen LH, Han Y, Jiang H, Korpelainen H, Li CY. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis [J]. J Exp Bot, 2011, 62 (14): 5037-5050
14 Li C, Yang Y, Junttila O, Palva ET. Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L) ecotypes [J]. Plant Sci, 2005, 168 (5): 1365-1370
15 胡人亮. 苔藓植物学[M]. 北京: 高等教育出版社, 1987: 34-45 [Hu RL. Bryophytology [M]. Beijing: Higher Education Press, 1987: 34-45]
16 吴玉环, 黄国宏, 高谦, 曹同. 苔藓植物对环境变化的响应及适应性研究进展[J]. 应用生态学报, 2001, 12 (6): 943-946 [Wu YH, Huang GH, Gao Q, Cao T. Research advance in response and adaptation of bryophytes to environmental change [J]. Chin J Appl Ecol, 2001, 12 (6): 943-946]
17 Schilling JS, Lehman ME. Bioindication of atmospheric heavy metal deposition in the Southeastern US using the moss Thuidium delicatulum [J]. Atmos Environ, 36: 1611-1618
18 Bowman JL, Araki T, Takayuki K. Marchantia: past, present and future [J]. Plant Cell Physiol, 2016, 57 (2): 205
19 Mewari N, Kumar P. Antimicrobial activity of extracts of Marchantia polymorpha [J]. Pharmac Biol, 2008, 46 (11): 819-822
20 G?kbulut A, Satilmis B, Batcio?lu K, Cetin B, Sarer E. Antioxidant activity and luteolin content of Marchantia polymorpha L. [J]. Turk J Biol, 2012, 36 (4): 381-385
21 宫庆彬. 鳞叶藓和地钱对重金属胁迫的生理生化响应和耐受机制[D]. 成都: 四川大学, 2015 [Gong QB. The responses and tolerance mechanism of Taxiphyllum taxirameum and Marchantia polymorpha to stress of Cd, Zn and Ni [D]. Chengdu: Sichuan University, 2015]
22 Roland MH, Sigrid MAT, Buena FG, Regina LCBH. Diversity of fungal endophytes isolated from Marchantia polymorpha populations from Baguio City, Philippines [J]. Bull Environ Pharmacol Life Sci, 2015, 4 (3): 87-91
23 Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha, chloroplast DNA [J]. Nature, 1986, 322 (6079): 572-574
24 Yamato KT, Ishizaki K, Fujisawa M, Okada S, Nakayama S, Fujishita M. Gene organization of the liverwort Y chromosome reveals distinct sex chromosome evolution in a haploid system [J]. PNAS, 2007, 104 (15): 6472-6477
25 Harrer R. Associations between light-harvesting complexes and Photosystem II from Marchantia polymorpha L. determined by two- and three-dimensional electron microscopy [J]. Photo Res, 2003, 75 (3): 249-258
26 李佳, 江洪, 余树全, 蒋馥蔚, 殷秀敏, 鲁美娟. 模拟酸雨胁迫对青冈幼苗光合特性和叶绿素荧光参数的影响[J]. 应用生态学报, 2009, 20 (9): 2092-2096 [Li J, Jiang H, Yu SQ, Jiang FY, Yin XM, Lu MJ. Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence [J]. Chin J Appl Ecol, 2009, 20 (9): 2092-2096]
27 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 46-89 [Li HS. Principle and Technology of Plant Physiological and Biochemical Experiments [M]. Beijing: Higher Education Press, 2000: 46-89]
28 蒋雪梅, 戚文华, 肖娟, 胥晓. 模拟酸雨对银杏雌雄幼苗生长及生理特性的影响[J]. 植物生理学报, 2014, 50 (7): 953-959 [Jiang XM, Qi WH, Xiao J, Xu X. Effects of simulated acid rain on the growth and physiological features of female and male Ginkgo biloba seedlings [J]. Plant Physiol J, 2014, 50 (7): 953-959]
29 殷秀敏, 余树全, 江洪, 刘美华. 酸雨胁迫对秃瓣杜英幼苗叶片叶绿素荧光特性和生长的影响[J]. 应用生态学报, 2010, 21 (6): 1374-1380 [Yin XM, Yu SQ, Jiang H, Liu MH. Effects of acid rain stress on Eleocarpus glabripetalus seedlings leaf chlorophyll fluorescence characteristics and growth [J]. Chin J Appl Ecol, 2010, 21 (6): 1374-1380]
30 胡晓梅, 尚鹤, 苟姝贞. 模拟酸雨胁迫对银杏部分生理特性的影响[J]. 河南农业科学, 2010, 39 (9): 106-109 [Hu XM, Shang H, Gou SZ. Effects of simulated acid rain on the physiological characteristics in ginkgo [J]. J Henan Agricu Sci, 2010, 39 (9): 106-109]
31 唐玲, 李倩中, 李淑顺. 模拟秋季酸雨对三角枫叶片光合生理特性的影响[J]. 西北植物学报, 2016, 36 (12): 2484-2490 [Tang L, Li QZ, Li SS. Effects of stimulated acid rain in autumn on leaf photosynthetic characteristics in the leaf of Acer buergerianum Miq [J]. Acta Bot Bor Occid Sin , 2016, 36 (12): 2484-2490]
32 何杨. 模拟酸雨对花叶良姜生理生态的影响及镧调节[D]. 成都: 四川农业大学, 2013 [He Y. Effect of simulated acid rain on physiological and ecological characteristics of Alpinia zerumbet and Lanthanum regulation [D]. Chengdu: Sichuan Agricultural University, 2013]
33 郭慧媛. 毛竹对模拟酸雨胁迫的生理生化响应机制[D]. 北京: 中国林业科学研究院, 2014 [Guo HY. Physiological and Biochemical response mechanism of Phyllostachys pubescens under acid rain stress [J]. Beijing: Chinese Academy of Forestry, 2014]
34 Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants [J]. Plant Physiol Biochem, 2010, 48 (12): 909-930.
35 Dawson TP, North PRJ, Plummer SE, Curran, PJ. Forest ecosystem chlorophyll content: implications for remotely sensed estimates of net primary productivity [J]. Int J Remote Sens, 2003, 24 (3): 611-617
36 Guanter L, Zhang Y, Jung M, Joiner J, Voigt M, Berry JA. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence [J]. PNAS, 2014, 111 (14): 1327-1333
37 Sun SQ, He M, Cao T, Zhang, YC, Han W. Response mechanisms of antioxidants in bryophyte (Hypnum plumaeforme) under the stress of single or combined Pb and/or Ni [J]. Environ Monitor Assess, 2009, 149 (14): 291-302
38 陈菁, 石伟琦, 孙光明, 冼皑敏. 干旱胁迫对菠萝苗期生长及叶绿素含量的影响[J]. 热带农业科学, 2012, 32 (7): 9-11 [Chen J, Shi WQ, Sun GM, Xian AM. Effects of drought stress on the growth and chlorophyll content of pineapple seedling [J]. Chin J Trop Agric, 2012, 32 (7): 9-11]
39 李志国, 翁忙玲, 姜武, 姜卫兵. 模拟酸雨对乐东拟单性木兰幼苗部分生理指标的影响[J]. 生态学杂志, 2007, 26 (1): 31-34 [ Li ZG, Weng ML, Jiang W, Jiang WB. Effects of simulated acid rain on some physiological indices of Parakmeria lotungensis seedlings [J] Chin J Ecol, 2007, 26 (1): 31-34 ]
40 夏阳, 孙明高, 李国雷, 张金凤, 胡学俭, 徐红兵. 盐胁迫对四园林绿化树种叶片中叶绿素含量动态变化的影响[J]. 山东农业大学学报(自然科学版), 2005, 36 (1): 30-34 [Xia Y, Sun MG, Li GL, Zhang JF, Hu XJ, Xu HB. The effects of salt stress on the contents of chlorophyll in seedling leaves of four garden tree species [J]. J Shandong Agric Univ (Nat Sci Ed), 2005, 36 (1): 30-34]
41 王碧霞, 肖娟, 冯旭, 甘丽芬, 唐娅. 铬胁迫对葎草雌雄植株光合生理特性的不同影响[J]. 草业学报, 2016, 25 (7): 131-139 [Wang BX, Xiao J, Feng X, Gan LF, Tang Y. Effects of Chromium stress on physiological and ecophysiological characteristic of male and female plants of Humulus scandens [J]. Acta Pratacult Sin, 2016, 25 (7): 131-139]
42 邱栋梁, 刘星辉. 模拟酸雨对龙眼叶绿体的伤害效应[J]. 应用与环境生物学报, 2002, 8 (2): 154-158 [Qiu DL, Liu XH. Injury effects of simulated acid rain on chloroplasts of longan leaves [J]. Chin J Appl Environ Biol, 2002, 8 (2): 154-158]
43 Pe?uelas J, Filella I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status [J]. Trend Plant Sci, 1998, 3 (4): 151-156
44 冯建灿, 胡秀丽, 毛训甲. 叶绿素荧光动力学在研究植物逆境生理中的应用[J]. 经济林研究, 2002, 4: 14-18 [Feng JC, Hu XL, Mao XJ. Application of chlorophyll fluorescence dynamics to plant physiology in adverse circumstance [J]. Non For Res, 2002, 4: 14-18]
45 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学报, 1999, 16 (4): 444-448 [Zhang SZ. A discussion on chlorophyll fluorescence kinetics parameters and their significance [J]. Chin Bull Bot, 1999, 16 (4): 444-448
46 Krause GH. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms [J]. Physiol Plantarum, 1988, 74 (3): 566-574
47 陈建明, 俞晓平, 程家安. 叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J]. 浙江农业学报, 2006, 18 (1): 51-55 [Chen JM, Yu XP, Cheng JA. The application of chlorophyll fluorescence kinetics in the study of physiological responses of plants to environmental stresses [J]. Acta Agric Zhejiangensis, 2006, 18 (1): 51-55]
48 胥晓, 杨帆, 尹春英, 李春阳. 雌雄异株植物对环境胁迫响应的性别差异研究进展[J]. 应用生态学报, 2007, 18 (11): 2626-2631 [Xu X, Yang F, Yin CY, Li CY. Research advances in sex-specific responses of dioecious plants to environmental stresses [J]. Chin J Appl Ecol, 2007, 18 (11): 2626-2631]
49 Peng S, Jiang H, Zhang S, Chen, L, Li X, Korpelainen H. Transcriptional profiling reveals sexual differences of the leaf transcript -iomes in response to drought stress in Populus yunnanensis [J]. Tree Physiol, 2012, 32 (12): 1541-1542
50 Chen F, Zhang S, Jiang H, Ma W, Korpelainen H, Li C. Comparative proteomics analysis of salt response reveals sex-related photosynthetic inhibition by salinity in Populus cathayana cuttings [J]. J Proteome Res, 2011, 10 (9): 3944-3958
51 Bisang I, Heden?s L. Sex ratio patterns in dioicous bryophytes revisited [J]. Trans Brit Bryol Soc, 2005, 27 (3): 207-219
52 Stark LR, Mcletchie DN, Mishler BD. Sex expression, plant size, and spatial segregation of the sexes across a stress gradient in the desert moss Syntrichia caninervis [J]. Bryologist, 2005, 108 (2): 183-193


Last Update: 2019-02-25