|Table of Contents|

Current technical progresses in the cultivation for uncultured microorganism*(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2016 03
Research Field:
Publishing date:


Current technical progresses in the cultivation for uncultured microorganism*
FAN Niansi QI Rong** & YANG Min
Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, State Key Laboratory of Environmental Aquatic Chemistry, Beijing 100085, China
environmental microorganism uncultured microorganism limiting factorcultivation method molecular biological technology
Q93-335 : Q78

Only 1% of the natural microorganisms can be artificially isolated and cultured. The large quantity of uncultured microorganisms, the microbes that cannot be kept alive in artificial conditions, is therefore a vast reservoir of natural microorganism resources. One of the major obstacles for further research on these uncultured microorganisms lies in understanding the in situ surviving environmental essentials and precisely duplicating them in the lab condition. This article systematically summarizes the limitation of the present knowledge about in situ environment, related research experiences and advances in the decades. The cultured proportion of uncultured microorganisms has improved owing to the new culture methods and facilities advances, represented as novel or modified media, high throughput sequencing and microfluidics. Many uncultured bacteria from various environment were isolated including intestinal bacteria (Ruminococcaceae), bacterioplankton (Formosa) and soil bacteria (Candidate N. defluvii). Based on the dramatic progress of molecular biological methodology, particularly gene annotation of amplicon sequencing and metagenome sequencing to reveal the metabolic mechanism, a promising approach was predictable to quickly find suitable culture conditions and avoid the weakness of traditional methods. Therefore, as an effort of new culture technology application, the cultivation of uncultured microorganism is relied on the molecular biological method evolution, which is not only a basic and efficient experimental tool of microbial diversity and ecosystem researches, but also illustrate the direction of coming isolation and cultivation.


1 Alain K, Querellou J. Cultivating the uncultured: limits, advances and future challenges [J]. Extremophiles, 2009, 13 (4): 583-5942 Xu HS, Roberts N, Singleton F, Attwell R, Grimes D, Colwell R. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment [J]. Microbial Ecol, 1982, 8 (4): 313-3233 Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans AD. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils [J]. Microbiology, 1997, 143 (9): 2983-29894 Stackebrandt E, Embley TM. Diversity of Uncultured Microorganisms in the Environment [M]. New York: Springer US, 2000: 57-755 Newman DK, Banfield JF. Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems [J]. Science, 2002, 296 (5570): 1071-10776 Narihiro T, Kamagata Y. Cultivating yet-to-be cultivated microbes: the challenge continues [J]. Microb Environ, 2013, 28 (2): 163-1657 Ravin N, Mardanov A, Skryabin K. Metagenomics as a tool for the investigation of uncultured microorganisms [J]. Rus J Gen, 2015, 51 (5): 431-4398 Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species [J]. Nat Rev Microbiol, 2008, 6 (6): 431-4409 Reddy T, ThomasAD, Stamatis D, Bertsch J, Isbandi M, Jansson J, Mallajosyula J, Pagani I, Lobos EA, Kyrpides NC. The Genomes OnLine Database (GOLD) v. 5: a metadata management system based on a four level (meta) genome project classification [J]. Nucleic Acids Res, 2014, 43: 1-810 Simu K, Hagstr?m ?. Oligotrophic bacterioplankton with a novel single-cell life strategy [J]. Appl Environ Microbiol, 2004, 70 (4): 2445-245111 王保军, 刘双江. 环境微生物培养新技术的研究进展[J]. 微生物学通报, 2013, 40 (1): 6-17 [Wang BJ, Liu SJ. Perspectives on the cultivability of environmental microorganisms [J]. Microbiol China, 2013, 40 (1): 6-17]12 田甜, 李冬梅, 戴世鲲, 殷克东, 孙慧敏, 李翔. 海洋环境中难培养微生物的寡营养培养[J]. 微生物学通报, 2009. 36 (7): 1031-1039 [Tian T, Li DM, Dai SK, Yin KD, Sun HM, Li X. Culture methods of the oligotrophic marine microbes [J]. Microbiology, 2009, 36 (7): 1031-1039]13 Ostrowski M, Fegatella F, Wasinger V, Guilhaus M, Corthals GL, Cavicchioli R. Cross-species identification of proteins from proteome profiles of the marine oligotrophic ultramicrobacterium, Sphingopyxis alaskensis [J]. Proteomics, 2004, 4 (6): 1779-178814 Schut F, Vries EJ, Gottschal JC, Robertson BR, Harder W, Prins RA, Button DK. Isolation of typical marine bacteria by dilution culture: growth, maintenance, and characteristics of isolates under laboratory conditions [J]. Appl Environ Microbiol, 1993, 59 (7): 2150-216015 Cho JC, Giovannoni SJ. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gammaproteobacteria [J]. Appl Environ Microbiol, 2004, 70 (1): 432-44016 Pierson L, Keppenne VD, Wood DW. Phenazine antibiotic biosynthesis in Pseudomonas aureofaciens 30-84 is regulated by PhzR in response to cell density [J]. J Bacteriol, 1994, 176 (13): 3966-397417 Zhang L, Murphy PJ, Kerr A, Tate ME. Agrobacterium conjugation and gene regulation by N-acyl-L-homoserine lactones [J]. Nature, 1993, 362: 446-44918 Lesprit P, Faurisson F, Lambert OJ, Thoraval FR, Foglino M, Vissuzaine C, Carbon C. Role of the quorum-sensing system in experimental pneumonia due to Pseudomonas aeruginosa in rats [J]. Americ J Respirat Critc Care Med, 2003, 167 (11): 1478-148219 Eberl L, Winson MK, Sternberg C, Stewart GS, Christiansen G, Chhabra SR, Bycroft B, Williams P, Molin S, Givskov M. Involvement of N-acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens [J]. Molec Microbiol, 1996, 20 (1): 127-13620 Singh PK, SchaeferAL, Parsek MR, Moninger TO, Welsh MJ, Greenberg E, Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms [J]. Nature, 2000, 407 (6805): 762-76421 McIlroy SJ, Kristiansen R, Albertsen M, Karst SM, Rossetti S, Nielsen JL, Tandoi V, Seviour RJ, Nielsen PH. Metabolic model for the filamentous ‘Candidatus Microthrix parvicella’based on genomic and metagenomic analyses [J]. ISME J, 2013, 7 (6): 1161-117222 Trevors J. Viable but non-culturable (VBNC) bacteria: Gene expression in planktonic and biofilm cells [J]. J Microbiol Meth, 2011, 86 (2): 266-27323 Sanmee R, Lumyong P, Dell B, Lumyong S. In vitro cultivation and fruit body formation of the black bolete, Phlebopus portentosus, a popular edible ectomycorrhizal fungus in Thailand [J]. Mycoscience, 2010, 51 (1): 15-2224 Kenters N, Henderson G, Jeyanathan J, Kittelmann S, Janssen PH. Isolation of previously uncultured rumen bacteria by dilution to extinction using a new liquid culture medium [J]. J Microbiol Meth, 2011, 84 (1): 52-6025 Rettedal EA, Gumpert H, Sommer MO. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria [J]. Nat Commun, 2014, 5: 1-926 Nichols D, Lewis K, Orjala J, Mo S, Ortenberg R, O’Connor P, Zhao C, Vouros P, Kaeberlein T, Epstein SS. Short peptide induces an “uncultivable” microorganism to grow in vitro [J]. Appl Environ Microbiol, 2008, 74 (15): 4889-489727 Hirakawa H, Tomita H. New class of Acyl-homoserine lactone quorum sensing signals [J]. Japan J Bacteriol, 2012, 68 (4): 325-33528 曾建民, 曾振顺, 原红娟, 谭志远. 难培养微生物培养方法的研究进展 [J]. 生物技术进展, 2012, 2 (3): 165-170 [Ceng JM, Ceng ZS, Yuan HJ, Tan ZY. Advances in culture methods of oligotrophic microbes [J]. Curr Biotechnol, 2012, 2 (3): 165-170]29 Egan M, Motherway MOC, Kilcoyne M, Kane M, Joshi L, Ventura M, Sinderen D. Cross-feeding by Bifidobacterium breve UCC2003 during co-cultivation with Bifidobacterium bifidum PRL2010 in a mucin-based medium [J]. BMC Microbiol, 2014, 14 (1): 28230 Stott MB, Crowe MA, Mountain BW, Smirnova AV, Hou S, Alam M, Dunfield PF. Isolation of novel bacteria, including a candidate division, from geothermal soils in New Zealand [J]. Environ Microbiol, 2008, 10 (8): 2030-204131 Hahnke RL, Bennke CM, Fuchs BM, Mann AJ, Rhiel E, Teeling H, Amann R, Harder J, Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea [J]. Environ Microbiol, 2015, 17 (10): 3515-352632 Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia [J]. Appl Environ Microbiol, 2002, 68 (5): 2391-239633 Zengler K, Walcher M, Clark G, Haller H, Toledo G, Holland T, Mathur EJ, Woodnutt G, Short JM, Keller M. High-throughput cultivation of microorganisms using microcapsules [J]. Meth Mnzymol, 2005, 397: 124-13034 Zengler K, Behrendt L. Protocols for High-Throughput Isolation and Cultivation [M]. New York: Humana Press, 2014, 1-935 Fujitani H, Ushiki N, Tsuneda S, Aoi Y. Isolation of sublineage I Nitrospira by a novel cultivation strategy [J]. Environ Microbiol, 2014, 16 (10): 3030-304036 Long Q, Liu X, Yang Y, Li L, Harvey L, McNeil B, Bai Z. The development and application of high throughput cultivation technology in bioprocess development [J]. J Biotechnol, 2014, 192: 323-33837 Yoon JY, Kim B. Lab-on-a-chip pathogen sensors for food safety [J]. Sensors, 2012, 12 (8): 10713-1074138 陈炯, 屠丽红, 陈艳新, 秦胜营. 微流体芯片技术检测食源性致病菌的应用研究 [J]. 上海预防医学, 2014, 26 (6): 330-335 [Chen J, Tu LH, Chen YX, Qin SY. Lab-on chip for the detection of food borne pathogenic bacteria. Shanghai J Prevent Med [J], 2014, 26 (6): 330-335]39 Ma L, Kim J, Hatzenpichler R, Karymov MA, Hubert N, Hanan IM, Chang EB, Ismagilov RF. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa [J]. Proc Nation Acad Sci, 2014, 111 (27): 9768-977340 Colin Y, Go?i-Urriza M, Caumette P, Guyoneaud R. Combination of high throughput cultivation and dsrA sequencing for assessment of sulfate-reducing bacteria diversity in sediments [J]. FEMS Microbiol Ecol, 2013, 83 (1): 26-3741 Collado J, Platas G, Paulus B, Bills GF. High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique [J]. FEMS Microbiol Ecol, 2007, 60 (3): 521-53342 Colin Y, Go?i-Urriza M, Caumette P, Guyoneaud R, Contribution of enrichments and resampling for sulfate reducing bacteria diversity assessment by high-throughput cultivation [J]. J Microbiol Meth, 2015, 110: 92-9743 Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition [J]. Appl Environ Microbiol, 1996, 62 (2): 316-32244 Donachie SP, Foster JS, Brown MV. Culture clash: challenging the dogma of microbial diversity [J]. ISME J, 2007, 1 (2): 97-10245 Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products [J]. Chem Biol, 1998, 5 (10): 245-24946 Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH, Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes [J]. Nat Biotechnol, 2013, 31 (6): 533-53847 Blainey PC, Quake SR. Dissecting genomic diversity, one cell at a time [J]. Nat Meth, 2014, 11 (1): 19-2148 Stepanauskas R. Single cell genomics: an individual look at microbes [J]. Curr Opin Microbiol, 2012, 15 (5): 613-62049 董燕, 宋程程, 黄鹤. 单细胞测序技术研究进展 [J]. 化学工业与工程, 2015, 32 (1): 71-78 [Dong Y, Song CC, Huang H. Advances in single cell sequencing [J]. Chem Ind Eng, 2015, 32 (1): 71-78]50 Landry ZC, Giovanonni SJ, Quake SR, Blainey PC. Optofluidic cell selection from complex microbial communities for single-genome analysis [J]. Meth in Enzymol, 2013, 531: 61-9051 Rinke C, Lee J, Nath N, Goudeau D, Thompson B, Poulton N, Dmitrieff E, MalmstromR, Stepanauskas R, Woyke T. Obtaining genomes from uncultivated environmental microorganisms using FACS–based single-cell genomics [J]. Nat Prot, 2014, 9 (5): 1038-104852 Blainey PC. The future is now: single-cell genomics of bacteria and archaea [J]. FEMS Microbiol Rev, 2013, 37 (3): 407-42753 Marshall IP, Blainey PC, Spormann AM, Quake SR. A single-cell genome for Thiovulums [J]. Appl Environ Microbiol, 2012, 78 (24): 8555-856354 Pamp SJ, Harrington ED, Quake SR, RelmanDA, Blainey PC. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB) [J]. Gen Res, 2012, 22 (6): 1107-111955 Blainey PC, Mosier AC, Potanina A, Francis CA, Quake SR. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis [J]. PLoS ONE, 2011, 6 (2): 1-1256 Embree M, Nagarajan H, Movahedi N, Chitsaz H, Zengler K. Single-cell genome and metatranscriptome sequencing reveal metabolic interactions of an alkane-degrading methanogenic community [J]. ISME J, 2014, 8 (4): 757-76757 Morris RM, Connon SA, Vergin KL, Siebold WA, Carlson CA, Giovannoni SJ. SAR11 clade dominates ocean surface bacterioplankton communities [J]. Nature, 2002, 420 (6917): 806-81058 Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade [J]. Nature, 2002, 418 (6898): 630-63359 Tripp HJ, Kitner JB, Schwalbach MS, Dacey JWH, Wilhelm LJ, Giovannoni SJ. SAR11 marine bacteria require exogenous reduced sulphur for growth [J]. Nature, 2008, 452 (7188): 741-74460 Lienen T, Kleyb?cker A, Verstraete W, Würdemann H. Foam formation in a downstream digester of a cascade running full-scale biogas plant: Influence of fat, oil and grease addition and abundance of the filamentous bacterium Microthrix parvicella [J]. Biores Technol, 2014, 153: 1-7


Last Update: 2016-06-25