|Table of Contents|

Isolation and expression of a eukaryotic translation initiation factor 5A gene from sugarcane(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2015 06
Page:
1120-1127
Research Field:
Articles
Publishing date:

Info

Title:
Isolation and expression of a eukaryotic translation initiation factor 5A gene from sugarcane
Author(s):
QUE Wancai HUANG Ning LIU Feng XIAO Xinhuan LING Hui ZHANG Yuye SU Weihua SU Yachun WU Qibin QUE Youxiong
1Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou 350001, China 2Key Laboratory of Sugarcane Biology and Genetic Breeding (Fujian), Ministry of Agriculture, Fujian Agriculture and Forestry University/Sugarcane Research & Development Center, China Agricultural Technology System, Fuzhou 350002, China
Keywords:
sugarcane eIF5A Sporisorium scitamineum bioinformatics Real-time Quantitative PCR
CLC:
Q78 : S566.103.4
PACS:
DOI:
10.3724/SP.J.1145.2015.04008
DocumentCode:

Abstract:
Eukaryotic translation initiation factor 5A (eIF5A) is ubiquitous in animals, plants and fungi. To reveal the responses of sugarcane eIF5A gene to biotic stresses, the present study first obtained an EST sequence with 93% homologs to Zea mays eIF5A (GenBank Accession Number:EU958725.1) from a suppression subtractive hybridization (SSH) library of sugarcane challenged by Sporisorium scitamineum. The EST sequence was then used as the probe for in silico cloning to obtain a putative cDNA sequence of sugarcane eIF5A gene. This gene was validated by reverse transcription-PCR (RT-PCR) amplification sequencing, which showed that the sequence cloned by in silico cloning was in accordance with the sequence amplified by RT-PCR method, and was named as SceIF5A (GenBank Accession Number: KJ577595). Bioinformatics analysis indicated that SceIF5A, with a length of 1 174 bp, containing a 483 bp open reading frame (ORF) encoding 160 amino acids protein, was a stable acidic cytoplasm protein with a weight of 17 453.6 Da containing 12 highly conserved amino acid sequences. Real-time quantitative PCR analysis showed that the expression of SceIF5A was up-regulated under smut fungus infection and the treatments of SA, MeJA and ABA. The results suggested that SceIF5A in sugarcane is most probably involved in response to sugarcane smut fungus infection and to hormone related bioprocess signaling. The results of this study regarding the structure and function of SceIF5A should lay the foundation for further research in the elaboration of functions of this gene during the interaction between sugarcane and S. scitamineum.

References

1 Cheavegatti-Gianotto A, de Abreu HMC, Arruda P, Bespalhok Filho JC, Burnquist WL, Creste S, Di Ciero L, Ferro JA, de Oliveira Figueira AV, de Sousa Filgueiras T. Sugarcane (Saccharum X officinarum): a reference study for the regulation of genetically modified cultivars in Brazil [J]. Trop Plant Biol, 2011, 4 (1): 62-89
2 Que YX, Xu LP. Wu QB, Liu YF, Ling H, Liu YH, Zhang YY, Guo JL, Su YC, Chen JB, Wang SS, Zhang CG. Genome sequencing of Sporisorium scitamineum provides insights into the pathogenic mechanisms of sugarcane smut [J]. BMC Genomics, 2014, 15: 996, doi: 10.1186/1471-2164-15-996
3 许莉萍, 陈如凯. 与甘蔗抗黑穗病基因连锁的RAPD标记筛选[J]. 应用与环境生物学报, 2004, 10 (3): 263-267 [Xu LP, Chen RK. Identification of RAPD marker linked to smut resistance gene in sugarcane [J]. Chin J Appl Environ Biol, 2004, 10 (3): 263-267]
4 莫凤连, 杨丽涛, 潘如科, 宋修鹏, 李杨瑞. 甘蔗黑穗病菌胁迫对甘蔗内源激素含量的影响[J]. 南方农业学报, 2012, 43 (11): 1676-1681 [Mo FL, Yang LT, Pan RK, Song XP, Li YR. Changes of endogenous hormone content in sugarcane under smut pathogen stress [J]. J S Agric, 2012, 43 (11): 1676-1681]
5 Que YX, Su YC, Guo JL, Wu QB, Xu LP. A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq [J]. PLoS ONE, 2014, 9 (8): e106476
6 Que YX, Xu LP, Lin JW, Ruan MH, Zhang MQ, Chen RK. Differential protein expression in sugarcane during sugarcane-Sporisorium scitamineum interaction revealed by 2-DE and MALDI-TOF-TOF/MS [J]. Comp Funct Genom, 2011, 2011, doi: 10.1155/2011/989016
7 Kemper W, Berry K, Merrick W. Purification and properties of rabbit reticulocyte protein synthesis initiation factors M2Balpha and M2Bbeta [J]. J Biol Chem, 1976, 251 (18): 5551-5557
8 Bartig D, Lemkemeier K, Frank J, Lottspeich F, Klink F. The archaebacterial hypusine-containing protein [J]. Eur J Biochem, 1992, 204 (2): 751-758
9 Kyrpides NC, Woese CR. Universally conserved translation initiation factors [J]. Proc Natl Acad Sci, 1998, 95 (1): 224-228
10 Zanelli C, Valentini S. Is there a role for eIF5A in translation? [J]. Amino Acids, 2007, 33 (2): 351-358
11 Parkash J, Vaidya T, Kirti S, Dutt S. Translation initiation factor 5A in Picrorhiza is up-regulated during leaf senescence and in response to abscisic acid [J]. Gene, 2014, 542 (1): 1-7
12 张利姣, 张杰伟, 陈亚娟, 管阳, 王宏芝, 魏建华. 毛白杨真核细胞翻译起始因子5A基因 (PtoeIF5A4) 的克隆与表达分析[J]. 农业生物技术学报, 2013, 21 (8): 949-956 [Zhang LJ, Zhang JW, Chen YJ, Guan Y, Wang HZ, Wei JH. Cloning and expression analysis of the eukaryotic translation initiation factor 5A gene (PtoeIF5A4) in Populus tomentosa [J]. J Agric Biotechnol, 2013, 21 (8): 949-956]
13 Hopkins MT, Lampi Y, Wang TW, Liu Z, Thompson JE. Eukaryotic translation initiation factor 5A is involved in pathogen-induced cell death and development of disease symptoms in Arabidopsis thaliana [J]. Plant Physiol, 2008, 148 (1): 479-489
14 Lan P, Schmidt W. The enigma of eIF5A in the iron deficiency response of Arabidopsis [J]. Plant Signal Behav, 2011, 6 (4): 528-530
15 Huang XL, Liu LX, Chen J, Zhai YH. Comparative proteomic analysis of the response in resistant and susceptible maize inbred lines to infection by Curvularia lunata [J]. Prog Nat Sci, 2009, 19 (7): 845-850
16 Xu J, Zhang B, Jiang C, Ming F. RceIF5A, encoding an eukaryotic translation initiation factor 5A in Rosa chinensis, can enhance thermotolerance, oxidative and osmotic stress resistance of Arabidopsis thaliana [J]. Plant Mol Biol, 2011, 75 (1-2): 167-178
17 Chamot D, Kuhlemeier C. Differential expression of genes encoding the hypusine-containing translation initiation factor, elF-5A, in tobacco [J]. Nucleic Acids Res, 1992, 20 (4): 665-669
18 Chou WC, Huang YW, Tsay WS, Chiang TY, Huang DD, Huang HJ. Expression of genes encoding the rice translation initiation factor, eIF5A, is involved in developmental and environmental responses [J]. Physiol Plant, 2004, 121 (1): 50-57
19 Wang TW, Lu L, Zhang CG, Taylor C, Thompson JE. Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana [J]. Plant Mol Biol, 2003, 52 (6): 1223-1235
20 黄宁, 张玉叶, 凌辉, 罗俊, 吴期滨, 阙友雄. 甘蔗二氨基庚二酸异构酶基因的克隆与表达分析[J]. 热带作物学报, 2013, 34 (11): 2200-2208 [Huang N, Zhang YY, Ling H, Luo J, Wu QB, Que YX. Cloning and expression analysis of a diaminopimelate epimerase gene in sugarcane [J]. Chin J Trop Crops, 2013, 34 (11): 2200-2208]
21 Su YC, Xu LP, Xue BT, Wu QB, Guo JL, Wu LG, Que YX. Molecular cloning and characterization of two pathogenesis-related beta-1,3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum [J]. Plant Cell Rep, 2013, 32 (10): 1503-1519
22 Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein Identification and Analysis Tools on the ExPASy Server [M]. New York: Humana Press, 2005
23 Nakai K, Horton P. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization [J]. Trends Biochem Sci, 1999, 24 (1): 34-35
24 Hua S, Sun Z. Support vector machine approach for protein subcellular localization prediction [J]. Bioinformatics, 2001, 17(8): 721-728
25 Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015 [J]. Nucleic Acids Res, 2015, 43 (D1): D257-D260
26 Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M. Pfam: the protein families database [J]. Nucleic Acids Res, 2013, 42 (D1): D222-230
27 Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information [J]. Nucleic Acids Res, 2014, 42 (W1): W252-W258
28 阙友雄, 许莉萍, 徐景升, 张积森, 张木清, 陈如凯. 甘蔗基因表达定量 PCR 分析中内参基因的选择[J]. 热带作物学报, 2009, 30 (3): 274-278 [Que YX, Xu LP, Xu JS, Zhang JS, Zhang MQ, Chen RK. Selection of control genes in real-time qPCR analysis of gene expression in sugarcane [J].Chin J Trop Crops, 2009, 30 (3): 274-278]
29 Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2? ΔΔCTmethod [J]. Methods, 2001, 25 (4): 402-408
30 肖新换, 黄宁, 张玉叶, 杨宗锋, 凌辉, 黄珑, 苏炜华, 阙友雄. 甘蔗光合系统Ⅰ亚基O基因的克隆与表达分析[J]. 应用与环境生物学报, 2015, 21 (2): 208-214 [Xiao XH, Huang N, Zhang YY, Yang ZF, Ling H, Huang L, Su WH, Que YX. Cloning and expression of photosystem I subunit O gene from sugarcane [J]. Chin J Appl Environ Biol, 2015, 21 (2): 208-214]
31 肖新换, 黄珑, 黄宁, 张玉叶, 凌辉, 刘峰, 苏炜华, 阙友雄. 甘蔗ScBAK基因及其可变剪接体的克隆与表达分析[J]. 应用与环境生物学报, 2015, 21 (5): 872-881 [Xiao XH, Huang L, Huang N, Zhang YY, Ling H, Liu F, Su WH, Que YX. Cloning and expression analysis of ScBAK gene and its alternative spliceosome gene in sugarcane [J]. Chin J Appl Environ Biol, 2015, 21 (5): 872-881
32 Li YR, Yang LT. Sugarcane agriculture and sugar industry in China [J]. Sugar Tech, 2015, 17(1): 1-8
33 LaO M, Arencibia AD, Carmona ER, Acevedo R, Rodríguez E, León O, Santana I. Differential expression analysis by cDNA-AFLP of Saccharum spp. after inoculation with the host pathogen Sporisorium scitamineum [J]. Plant Cell Rep, 2008, 27 (6): 1103-1111
34 Que YX, Lin JW, Song XX, Xu LP, Chen RK. Differential gene expression in sugarcane in response to challenge by fungal pathogen Ustilago scitaminea revealed by cDNA-AFLP [J]. BioMed Res Int, 2011, 2011, doi: 10.1155/2011/160934
35 Huang N, Zhang YY, Xiao XH, Huang L, Wu QB, Que YX, Xu LP. Identification of smut-responsive genes in sugarcane using cDNA-SRAP [J]. Genet Mol Res, 2015, 14 (2): 6808-6818
36 Que YX, Yandg ZX, Xu LP, Chen RK. Isolation and identification of differentially expressed genes in sugarcane infected by Ustilago scitaminea [J]. Acta Agron Sin, 2009, 35 (3): 452-458
37 Wu QB, Xu LP, Guo JL, Su YC, Que YX. Transcriptome profile analysis of sugarcane responses to Sporisorium scitaminea infection using Solexa sequencing technology [J]. BioMed Res Int, 2013, 2013, http://dx.doi.org/10.1155/2013/298920
38 黄宁. 黑穗病菌胁迫下甘蔗SSH文库构建及差异表达基因的克隆与分析[D]. 福建: 福建农林大学, 2014 [Huang N. Construction of suppressionsubtractive hybridization libraries of sugarcane challenged by Sporisorium scitamineum and cloning/ analysis of several differentially expressed genes [D]. Fujian: Fujian Agriculture and Forestry University, 2014]
39 Shi XP, Yin KC, Zimolo ZA, Stern AM, Waxman L. The subcellular distribution of eukaryotic translation initiation factor, eIF-5A, in cultured cells [J]. Exp Cell Res, 1996, 225 (2): 348-356
40 Ruhl M, Himmelspach M, Bahr GM, Hammerschmid F, Jaksche H, Wolff B, Aschauer H, Farrington GK, Probst H, Bevec D. Eukaryotic initiation factor 5A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation [J]. J Cell Biol, 1993, 123 (6): 1309-1320
41 Jao DL, Chen KY. Subcellular localization of the hypusine-containing eukaryotic initiation factor 5A by immunofluorescent staining and green fluorescent protein tagging [J]. J Cell Biochem, 2002, 86 (3): 590-600
42 Peat TS, Newman J, Waldo GS, Berendzen J, Terwilliger TC. Structure of translation initiation factor 5A from Pyrobaculum aerophilum at 1.75 ? resolution [J]. Structure, 1998, 6 (9): 1207-1214
43 Kim KK, Hung LW, Yokota H, Kim R, Kim SH. Crystal structures of eukaryotic translation initiation factor 5A from Methanococcus jannaschii at 1.8 ? resolution [J]. PNatl Acad Sci USA, 1998, 95 (18): 10419-10424
44 Yao M, Ohsawa A, Kikukawa S, Tanaka I, Kimura M. Crystal structure of hyperthermophilic archaeal initiation factor 5A: a homologue of eukaryotic initiation factor 5A (eIF-5A) [J]. J Biochem, 2003, 133 (1): 75-81
45 Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense [J]. Curr Opin Plant Biol, 2002, 5 (4): 325-331
46 阮期平, 周立, 刘勇. 小麦在与水杨酸诱导的应答过程中 PGIP 的积累[J]. 应用与环境生物学报, 2000, 6 (4): 313-316 [Ruan QP, Zhou L, Liu Y. PGIP accumulation in wheat in response to induction with salicylic acid [J]. Chin J Appl Environ Biol, 2000, 6 (4): 313-316]
47 宾金华, 潘瑞炽. 茉莉酸甲酯诱导烟草幼苗抗病与过氧化物酶活性和木质素含量的关系[J]. 应用与环境生物学报, 1999, 5 (2): 160-164 [Bin JH, Pan RC. The relationship of the disease resistance of tobacco seedlings induced by methyl jasmonate with peroxidase activity and lignin content [J]. Chin J Appl Environ Biol, 1999, 5 (2): 160-164]
48 Asselbergh B, De Vleesschauwer D, H?fte M. Global switches and fine-tuning-ABA modulates plant pathogen defense [J]. Mol Plant Microbe In, 2008, 21 (6): 709-719
49 Fontaniella B, Montani A, Rodrlla B, auwPi, Ro D, Solasd MT, Vicentea C, Legaz ME. A role for sugarcane glycoproteins in the resistance of sugarcane to Ustilago scitaminea [J]. Plant Physiol Biochem, 2002, 40 (10): 881-889

Memo

Memo:
-
Last Update: 2016-01-05