|Table of Contents|

Recent progress in studies of synthetic microbial community and its applications in bioengineering(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2015 06
Research Field:
Publishing date:


Recent progress in studies of synthetic microbial community and its applications in bioengineering
ZHANG Zhaojing LI Shuzhen DENG Ye LI Huijie LI Duanxing LIU Ziyan WANG Jingwei SHEN Wenli MA Qiao QU Yuanyuan ZHOU Jiti
1Key Laboratory of Industrial Ecology and Environmental Engineering of Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China 2Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China
synthetic microbial communities interspecies interactions microbial regulations bioengineering
Q938.1 + Q939.9

Synthetic microbial community represents an emerging frontier of synthetic biology at the level of microbial community and their applications have recently gained a lot of interest worldwide. This study reviews the characteristics, interspecies interactions, microbial regulations, and applications of synthetic microbial communities in bioengineering. Synthetic microbial communities, composed of multiple species with well-defined genetic background, can accomplish specific functions through interactions among microorganisms. These synthetic communities are characterized with low complexity, high controllability and stability. Various interactions may exist in synthetic microbial communities, including mutualism (cooperation), commensalism, parasitism or predation, and competition. These interactions can be regulated by modifying the cell-cell communication, metabolic pathway and spatial structures, thus achieving engineering of synthetic communities. In the last few years, synthetic microbial communities have been widely used in the field of bioprocessing, focusing on fuel production, synthesis of high-value chemicals, and pollutants bioremediation. However, the interactions in synthetic microbial communities have not been fully parsed yet, leaving limited capacity for simultaneous regulating the composition and function of the communities. Therefore, it should be the focus of future research to combine the synthetic biology, systematic biology and bioinformatics to rationally design and fabricate stable and efficient synthetic microbial communities, as well as to optimize and regulate the bioprocesses.


1 Song H, Ding MZ, Jia XQ, Ma Q, Yuan YJ. Synthetic microbial consortia-from systematic analysis to construction and applications [J]. Chem Soc Rev, 2014, 43 (20): 6954-6981
2 Benner SA, Sismour AM. Synthetic biology [J]. Nat Rev Genet, 2005, 6 (7): 533-543
3 杜瑾, 贾晓强, 元英进. 人工合成微生物混菌体系的研究进展[J]. 化工学报, 2014, 65 (2): 390-395 [Du J, Jia XQ, Yuan YJ. Research progress of synthetic microbial consortia [J]. CIESC J, 2014, 65 (2): 390-395]
4 Brenner K, You L, Arnold FH. Engineering microbial consortia: a new frontier in synthetic biology [J]. Trends Biotechnol, 2008, 26 (9): 483-489
5 Pandhal J, Noirel J. Synthetic microbial ecosystems for biotechnology [J]. Biotechnol Lett, 2014, 36 (6): 1141-1151
6 De Roy K, Marzorati M, Van den Abbeele P, Van de Wiele T, Boon N. Synthetic microbial ecosystems: an exciting tool to understand and apply microbial communities [J]. Environ Microbiol, 2014, 16 (6): 1472-1481
7 Bernstein HC, Carlson RP. Microbial consortia engineering for cellular factories: in vitro to in silico systems [J]. Comput Struct Biotechnol J, 2012, 3 (4): 1-8
8 Shong J, Jimenez Diaz MR, Collins CH. Towards synthetic microbial consortia for bioprocessing [J]. Curr Opin Biotechnol, 2012, 23 (5): 798-802
9 Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF. Defined spatial structure stabilizes a synthetic multispecies bacterial community [J]. Proc Natl Acad Sci USA, 2008, 105 (47): 18188-18193
10 Gro?kopf T, Soyer OS. Synthetic microbial communities [J]. Curr Opin Microbiol, 2014, 18: 72-77
11 Keller L, Surette MG. Communication in bacteria: an ecological and evolutionary perspective [J]. Nat Rev Microbiol, 2006, 4 (4): 249-258
12 Arai T, Matsuoka S, Cho HY, Yukawa H, Inui M, Wong SL, Doi RH. Synthesis of Clostridium cellulovorans minicellulosomes by intercellular complementation [J]. Proc Natl Acad Sci USA, 2007, 104 (5): 1456-1460
13 Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome [J]. Microb Cell Fact, 2011, 10: 89
14 Eiteman MA, Lee SA, Altman E. A co-fermentation strategy to consume sugar mixtures effectively [J]. J Biol Eng, 2008, 2: 3
15 Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. Network relationships of bacteria in a stable mixed culture [J]. Microb Ecol, 2008, 56 (3): 403-411
16 Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N. Initial community evenness favours functionality under selective stress [J]. Nature, 2009, 458 (7238): 623-626
17 Jagmann N, Philipp B. Design of synthetic microbial communities for biotechnological production processes [J]. J Biotechnol, 2014, 184: 209-218
18 Deng Y, Jiang YH, Yang YF, He ZL, Luo F, Zhou JZ. Molecular ecological network analyses [J]. BMC Bioinform, 2012, 13 (1): 113
19 Faust K, Raes J. Microbial interactions: from networks to models [J]. Nat Rev Microbiol, 2012, 10 (8): 538-550
20 Brenner K, Arnold FH. Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium [J]. PLoS ONE, 2011, 6 (2): e16791
21 Shou W, Ram S, Vilar JM. Synthetic cooperation in engineered yeast populations [J]. Proc Natl Acad Sci USA, 2007, 104 (6): 1877-1882
22 Qu Y, Feng Y, Wang X, Logan BE. Use of a coculture to enable current production by Geobacter sulfurreducens [J]. Appl Environ Microbiol, 2012, 78 (9): 3484-3487
23 Jagmann N, Brachvogel HP, Philipp B. Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila [J]. Environ Microbiol, 2010, 12 (6): 1787-1802
24 Foster KR, Bell T. Competition, not cooperation, dominates interactions among culturable microbial species [J]. Curr Biol, 2012, 22 (19):1845-1850
25 Fuqua C, Parsek MR, Greenberg EP. Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing [J]. Annu Rev Genet, 2001, 35: 439-468
26 Brenner K, Karig DK, Weiss R, Arnold FH. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium [J]. Proc Natl Acad Sci USA, 2007, 104 (44): 17300-17304
27 Roy V, Fernandes R, Tsao CY, Bentley WE. Cross species quorum quenching using a native AI-2 processing enzyme [J]. ACS Chem Biol, 2010, 5 (2): 223-232
28 Gro? A, R?del G, Ostermann K. Application of the yeast pheromone system for controlled cell-cell communication and signal amplification [J]. Lett Appl Microbiol, 2011, 52 (5): 521-526
29 Weber W, Daoud-El Baba M, Fussenegger M. Synthetic ecosystems based on airborne inter- and intrakingdom communication [J]. Proc Natl Acad Sci USA, 2007, 104 (25): 10435-10440
30 Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. Stable coexistence of five bacterial strains as a cellulose-degrading community [J]. Appl Environ Microbiol, 2005, 71 (11): 7099-7106
31 Hu B, Du J, Zou RY, Yuan YJ. An environment-sensitive synthetic microbial ecosystem [J]. PLoS ONE, 2010, 5 (5): e10619
32 Zhang J, Zhou JW, Liu J, Chen KJ, Liu LM, Chen J. Development of chemically de?ned media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium [J]. Bioresour Technol, 2011, 102 (7): 4807-4814
33 Shin HD, McClendon S, Vo T, Chen RR. Escherichia coli binary culture engineered for direct fermentation of hemicellulose to a biofuel [J]. Appl Environ Microbiol, 2010, 76 (24): 8150-8159
34 Patle S, Lal B. Ethanol production from hydrolysed agricultural wastes using mixed culture of Zymomonas mobilis and Candida tropicalis [J]. Biotechnol Lett, 2007, 29 (12): 1839-1843
35 Masset J, Calusinska M, Hamilton C, Hiligsmann S, Joris B, Wilmotte A, Thonart P. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. [J]. Biotechnol Biofuels, 2012, 5 (1): 35
36 Winter J, Wolfe RS. Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri [J]. Arch Microbiol, 1979, 121 (1): 97-102
37 Ma Q, Zhou J, Zhang W, Meng X, Sun J, Yuan YJ. Integrated proteomic and metabolomic analysis of an artificial microbial community for two-step production of vitamin C [J]. PLoS ONE, 2011, 6 (10): e26108
38 Xue FY, Miao JX, Zhang X, Tan TW. A new strategy for lipid production by mix cultivation of Spirulina platensis and Rhodotorula glutinis [J]. Appl Biochem Biotechnol, 2010, 160 (2): 489-503
39 Zhou K, Qiao K, Edgar S, Stephanopoulos G. Distributing a metabolic pathway among a microbial consortium enhances production of natural products [J]. Nat Biotechnol, 2015, 33 (4): 377-383
40 Cowan SE, Gilbert E, Liepmann D, Keasling JD. Commensal interactions in a dual-species biofilm exposed to mixed organic compounds [J]. Appl Environ Microbiol, 2000, 66 (10): 4481-4485
41 Pawelczyk S, Abraham WR, Harms H, Müller S. Community-based degradation of 4-chorosalicylate tracked on the single cell level [J]. J Microbiol Methods, 2008, 75 (1): 117-126
42 Chen Y, Li C, Zhou ZX, Wen JP, You XY, Mao YZ, Lu CZ, Huo GX, Jia XQ. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis [J]. Appl Biochem Biotechnol, 2014, 172 (7): 3433-3447
43 Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, H?fte M, De Vos P, Verstraete W, Top EM. Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading variovorax strain [J]. Appl Environ Microbiol, 2003, 69 (3): 1532-1541


Last Update: 2016-01-04