|Table of Contents|

Electrochemically active biofilms: formation, characterization and application(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2014 06
Page:
1096-1103
Research Field:
Reviews
Publishing date:

Info

Title:
Electrochemically active biofilms: formation, characterization and application
Author(s):
TANG Jiahuan LIU Yi ZHOU Shungui YUAN Yong
1Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 2Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650, China 3University of Chinese Academy of Sciences, Beijing 100049, China 4College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
Keywords:
electrochemically active biofilms electromicrobiology extracellular electron transfer bioelectrochemical systems microbial electrosynthesis
CLC:
Q939.9 : O646.54
PACS:
DOI:
10.3724/SP.J.1145.2014.03028
DocumentCode:

Abstract:
Microorganisms commonly form biofilms in order to strengthen their functions or survival in harsh environments. Electrochemically active biofilms (EABs) are special because they can donate electrons to, or accept electrons from, electrodes or natural analogs of electrodes such as Fe(Ⅲ) oxides and humid acids. Numerous promising applications can be developed based on EABs, including bio-remediation of polluted soils or water, electricity generation from waste materials, biosensors to monitor microbial metabolic activities, and biosynthesis of desirable products. This paper is organized as follows. Section 1 describes some Gram negative and Gram positive electroactive microbes,including Shewanella putrefaciens, Geobacter sulfurreducens and Clostridium butyricum EG3. Section 2 presents two principal approaches for EABs cultivation after describing the development of common biofilms that are not electroactive. Section 3 introduces the major electron-exchange mechanism, including how microorganisms get electrons from electrodes and how electrons from the decomposition of organic materials by microorganisms are conducted to electrode. Section 4 introduces electrochemical, spectroscopic, microscopic and molecular ecological techniques used to characterize the morphology and structure of a single microorganism or EABs to reveal the electron transfer mechanisms and influencing factors. Applications of EABs, which include energy production, wastewater and soil pollution remediation, and chemicals electrosynthesis, are introduced. Finally, we conclude that a uniform and standard method should be built up, more efforts should be put in revealing the electron-exchange mechanism between the microorganisms and the supporters, especially about how EABs accept electrons from electrodes. More understanding of the electron-transfer mechanism and its controlling factor, shall further promote the industrial application of EABs.

References

1 Liu H, Ramnarayanan R, Logan BE. Production of electricity during wastewater treatment using a single chamber microbial fuel cell [J]. Environ Sci Technol, 2004, 38 (7): 2281-2285
2 O’Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development [J]. Annu Rev Microbiol, 2000, 54: 49-79
3 Logan BE, Call D, Cheng S, Hamelers HVM, Sleutels THJA, Jeremiasse AW, Rozendal RA. Microbial electrolysis cells for high yield hydrogen gas production from organic matter [J]. Environ Sci Technol, 2008, 42 (23): 8630-8640
4 Cao X, Huang X, Liang P, Xiao K, Zhou Y, Zhang X, Logan BE. A new method for water desalination using microbial desalination cells [J]. Environ Sci Technol, 2009, 43 (18): 7148-7152
5 Strik DPBTB, Timmers, RA, Helder M, Steinbusch KJJ, Hamelers HVM, Buisman CJN. Microbial solar cells: applying photosynthetic and electrochemically active organisms [J]. Trends Biotechnol, 2011, 29 (1): 41-49
6 Torres CsI, Krajmalnik Brown R, Parameswaran P, Marcus AK, Wanger G, Gorby YA, Rittmann BE. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization [J]. Environ Sci Technol, 2009, 43 (24): 9519-9524
7 Parot S, Délia ML, Bergel A.Forming electrochemically active biofilms from garden compost under chronoamperometry [J]. Bioresour Technol, 2008, 99 (11): 4809-4816
8 Cheng SH, Liu H, Logan BE. Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells [J]. Environ Sci Technol, 2006, 40 (1): 364-369
9 肖勇, 吴松, 杨朝晖, 郑越, 赵峰. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25 (10): 1771-1780 [ Xiao Y, Wu S, Yang ZH, Zheng Y, Zhao F. Isolation and identification of electrochemically active microorganisms. Progr Chem, 2013, 25 (10): 1771-1780]
10 Kim BH, Kim HJ, Hyun MS, Park DH. Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens [J]. J Microbiol Biotechnol, 1999, 9 (2): 127-131
11 Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes [J]. Appl Environ Microbiol, 2003, 69 (3): 1548-1555
12 Chaudhuri SK, Lovley DR. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J]. Nat Biotechnol, 2003, 21 (10): 1229-1232
13 Pham CA, Jung SJ, Phung NT, Lee J, Chang IS, Kim BH, Yi H, Chun J. A novel electrochemically active and Fe (III)-reducing bacterium phylogenetically related to Aeromonas hydrophila, isolated from a microbial fuel cell [J]. FEMS Microbiol Lett, 2003, 223 (1): 129-134
14 Holmes DE, Nicoll JS, Bond DR, Lovley DR. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell [J]. Appl Environ Microbiol, 2004, 70 (10): 6023-6030
15 Zhang L, Zhou S, Zhuang L, Li W, Zhang J, Lu N, Deng L. Microbial fuel cell based on Klebsiella pneumoniae biofilm [J]. Electrochem Commun, 2008, 10 (10): 1641-1643
16 Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Chang IS, Park YK, Chang HI. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell [J]. Anaerobe, 2001, 7 (6): 297-306
17 Marshall CW, May HD. Electrochemical evidence of direct electrode reduction by a thermophilic Gram-positive bacterium, Thermincola ferriacetica [J]. Energy Envrion Sci, 2009, 2 (6): 699-705
18 Nimje VR, Chen CY, Chen CC, Jean JS, Reddy AS, Fan CW, Pan KY, Liu HT, Chen JL. Stable and high energy generation by a strain of Bacillus subtilis in a microbial fuel cell [J]. J Power Sourc, 2009, 190 (2): 258-263
19 Liu M, Yuan Y, Zhang LX, Zhuang L, Zhou SG, Ni JR. Bioelectricity generation by a Gram-positive Corynebacterium sp. strain MFC03 under alkaline condition in microbial fuel cells [J]. Bioresour Technol, 2010, 101 (6): 1807-1811
20 Luo J, Yang J, He H, Jin T, Zhou L, Wang M, Zhou M. A new electrochemically active bacterium phylogenetically related to Tolumonas osonensis and power performance in MFCs [J]. Bioresour Technol, 2013, 139: 141-148
21 Carlson HK, Iavarone AT, Gorur A, Yeo BS, Tran R, Melnyk RA, Mathies RA, Auer M, Coates JD. Surface multiheme c-type cytochromes from Thermincola potens and implications for respiratory metal reduction by Gram-positive bacteria [J]. Proc Natl Acad Sci USA, 2012, 109 (5): 1702-1707
22 Parameswaran P, Bry T, Popat SC, Lusk BG, Rittmann BE, Torres CsI. Kinetic, electrochemical, and microscopic characterization of the thermophilic, anode-respiring bacterium Thermincola ferriacetica [J]. Environ Sci Technol, 2013, 47 (9): 4934-4940
23 Milliken C, May H. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2 [J]. Appl Microbiol Biotech, 2007, 73 (5): 1180-1189
24 Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD. Electrochemical stimulation of microbial perchlorate reduction [J]. Environ Sci Technol, 2007, 41 (5): 1740-1746
25 Zhao F, Rahunen N, Varcoe JR, Chandra A, Avignone-Rossa C, Thumser AE, Slade RC. Activated carbon cloth as anode for sulfate removal in a microbial fuel cell [J]. Environ Sci Technol, 2008, 42 (13): 4971-4976
26 Gregory, KB, Bond, DR, Lovley, DR. Graphite electrodes as electron donors for anaerobic respiration [J]. Environ Microbiol, 2004, 6 (6): 596-604
27 Lovley DR. Electromicrobiology [J]. Annu Rev Microbiol, 2012, 66: 391-409
28 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds [J]. MBio, 2010, 1 (2): e00103-00110
29 马晨, 周顺桂, 庄莉, 武春媛. 微生物胞外呼吸电子转移机制研究进展[J]. 生态学报, 2011, 31 (7): 2008-2018 [Ma C, ZHou SG, ZHuang L, Wu CY. Electron transfer mechanism of extracellular respiration: a review. Acta Ecol Sin, 2011, 31 (7): 2008-2018]
30 Clauwaert P. Combining biocatalyzed electrolysis with anaerobic digestion [J]. Water Sci Technol, 2008, 57 (4): 575-579
31 Carothers JM, Goler JA, Keasling JD. Chemical synthesis using synthetic biology [J]. Curr Opin Biotechnol, 2009, 20 (4): 498-503
32 Rabaey K, Rozendal RA. Microbial electrosynthesis revisiting the electrical route for microbial production [J]. Nat Rev Microbiol, 2010, 8 (10): 706-716
33 Harnisch F, Rabaey K. The diversity of techniques to study electrochemically active biofilms highlights the need for standardization [J]. ChemSusChem, 2012, 5 (6): 1027-1038
34 Babauta J, Renslow R, Lewandowski Z, Beyenal H. Electrochemically active biofilms: facts and fiction. A review [J]. Biofouling, 2012, 28 (8): 789-812
35 Rabaey K. Bioelectrochemical Systems: From Extracellular Electron Transfer To Biotechnological Application [M]. IWA Publishing, 2010. 436
36 Busalmen JP, Esteve Nu?ez A, Berná A, Feliu JM. ATR-SEIR as characterization of surface redox processes in G. sulfurreducens [J]. Bioelectrochemistry, 2010, 78 (1): 25-29
37 Millo D, Harnisch F, Patil SA, Ly HK, Schr?der U, Hildebrandt P. In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface enhanced resonance raman spectroscopy [J]. Angew Chem Int Ed, 2011, 50 (11): 2625-2627
38 Nakamura R, Ishii K, Hashimoto K. Electronic absorption spectra and redox properties of C type cytochromes in living microbes [J]. Angew Chem Int Ed, 2009, 48 (9): 1606-1608
39 Kalathil S, Khan MM, Lee J, Cho MH. Production of bioelectricity, biohydrogen, high value chemicals and bioinspired nanomaterials by electrochemically active biofilms [J]. Biotechnol Adv, 2013, 31 (6): 915-924
40 Nevin KP, Kim BC, Glaven RH, Johnson JP, Woodard TL, Methé BA, DiDonato Jr RJ, Covalla SF, Franks AE, Liu A. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells [J]. PLoS One, 2009, 4 (5): e5628
41 McLean JS, Majors PD, Reardon CL, Bilskis CL, Reed SB, Romine MF, Fredrickson JK. Investigations of structure and metabolism within Shewanella oneidensis MR-1 biofilms [J]. J Microbiol Meth, 2008, 74 (1): 47-56
42 Lovley DR. Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination [J]. Energy Envrion Sci, 2011, 4 (12): 4896-4906
43 Aelterman P, Versichele M, Marzorati M, Boon N, Verstraete W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes [J]. Bioresour Technol, 2008, 99 (18): 8895-8902
44 Patil SA, Harnisch F, Koch C, Hübschmann T, Fetzer I, Carmona-Martínez AA, Müller S, Schr?der U. Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition [J]. Bioresour Technol, 2011, 102 (20): 9683-9690
45 Holmes DE, Chaudhuri SK, Nevin KP, Mehta T, Methé BA, Liu A, Ward JE, Woodard TL, Webster J, Lovley DR. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens [J]. Environ Microbiol, 2006, 8 (10): 1805-1815
46 Heilmann J, Logan BE. Production of electricity from proteins using a microbial fuel cell [J]. Water Environ Res, 2006, 78 (5): 531-537
47 Moon H, Chang IS, Kim BH. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell [J]. Bioresour Technol, 2006, 97 (4): 621-627
48 Shimoyama T, Komukai S, Yamazawa A, Ueno Y, Logan BE, Watanabe K. Electricity generation from model organic wastewater in a cassette-electrode microbial fuel cell [J]. Appl Microbiol Biotech, 2008, 80 (2): 325-330
49 Luo H, Liu G, Zhang R, Jin S. Phenol degradation in microbial fuel cells [J]. Chem Eng J, 2009, 147 (2): 259-264
50 Tender LM, Gray SA, Groveman E, Lowy DA, Kauffman P, Melhado J, Tyce RC, Flynn D, Petrecca R, Dobarro J. The first demonstration of a microbial fuel cell as a viable power supply: powering a meteorological buoy [J]. J Power Sources, 2008, 179 (2): 571-575
51 Tender LM, Reimers CE, Stecher HA. Harnessing microbially generated power on the seafloor [J]. Nat Biotechnol, 2002, 20 (8): 821-825
52 Kim M, Youn SM, Shin SH, Jang JG, Han SH, Hyun MS, Gadd GM, Kim HJ. Practical field application of a novel BOD monitoring system [J]. J Environ Monit, 2003, 5 (4): 640-643
53 Peixoto L, Min B, Martins G, Brito AG, Kroff P, Parpot P, Angelidaki I, Nogueira R. In situ microbial fuel cell-based biosensor for organic carbon [J]. Bioelectrochemistry, 2011, 81 (2): 99-103
54 Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environ Sci Technol, 2005, 39 (22): 8943-8947
55 Zhuang L, Zhou S, Yuan Y, Liu M, Wang Y. A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation [J]. Chem Eng J, 2010, 163 (1): 160-163
56 Chen JL, Chiou GC, Wu CC. Electrochemical oxidation of 4-chlorophenol with granular graphite electrodes [J]. Desalination, 2010, 264 (1): 92-96
57 Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, Lovley DR. Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ Microbiol Rep, 2010, 2 (2): 289-294
58 Wang A, Sun D, Cao G, Wang H, Ren N, Wu W-M, Logan BE. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell [J]. Bioresour Technol, 2011, 102 (5): 4137-4143
59 Cheng S, Logan BE. Sustainable and efficient biohydrogen production via electrohydrogenesis [J]. Proc Natl Acad Sci USA, 2007, 104 (47): 18871-18873
60 Bunge M, S?bjerg LS. Formation of palladium (0) nanoparticles at microbial surfaces [J]. Biotechnol Bioeng, 2010, 107 (2): 206-215
61 Khan MM, Lee J, Cho MH. Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles [J]. Int J Hydrogen Energy, 2013, 38 (13): 5243-5250
62 Tao HC, Zhang LJ, Gao ZY, Wu WM. Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor [J]. Bioresour Technol, 2011, 102 (22): 10334-10339
63 Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate [J]. Int J Hydrogen Energy, 2013, 38 (8): 3497-3502
64 Fast AG, Papoutsakis ET. Stoichiometric and energetic analyses of non photosynthetic CO2-fixation pathways to support synthetic biology strategies for production of fuels and chemicals [J]. Curr Opin Chem Eng, 2012, 1 (4): 380-395

Memo

Memo:
-
Last Update: 2015-01-06