|Table of Contents|

Effects of 5 insecticidal regulatory genes on Cr(Ⅵ) detoxification of Bacillus thuringiensis 407(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2014 05
Page:
785-790
Research Field:
Articles
Publishing date:

Info

Title:
Effects of 5 insecticidal regulatory genes on Cr(Ⅵ) detoxification of Bacillus thuringiensis 407
Author(s):
HUANG Tianpei ZHANG Jun DAI Ruiqing PAN Jieru ZHANG Lingling GUAN Xiong
1Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2Fuzhou Center for Disease Control and Prevention, Fuzhou 350004, China
Keywords:
Bacillus thuringiensis detoxification Cr(Ⅵ) Cr(Ⅵ) reduction Cr(Ⅵ) resistance regulatory gene
CLC:
S476 : X172
PACS:
DOI:
10.3724/SP.J.1145.2014.01023
DocumentCode:

Abstract:
This study aimed to investigate the effects of insecticidal regulatory genes on Cr(Ⅵ) detoxification of Bacillus thuringiensis 407. The growth curve of Bt 407 and its mutants (407 ΔplcR, 407 ΔinhA2, 407 ΔmpbE, 407 ΔsigmaE and 407 ΔsigmaK) were applied to determine the t0 (time of the strain enter into the stationary phase). The Cr(VI) and total Cr concentrations at t-3 (3 h before t0), t-2 (2 h before t0), t-1 (1 h before t0), t0, t1 (1 h after t0), t2 (2 h after t0), t3 (3 h after t0) and t4 (4 h after t0) were also detected. The genomic sequence of Bt 407 was analyzed for the existence of Cr(Ⅵ) resistant genes. And the model chart of Bt 407 Cr(Ⅵ) detoxification was primarily constructed. The results showed that PlcR, InhA2, MpbE and SigmaK negatively regulated the detoxification of Cr(Ⅵ) by reducation, while SigmaE had no effects on the process. Cr(Ⅵ) resistant genes azoR, efx and chrA were obtained by genomic analysis of Bt 407. The mechanisms of Cr(Ⅵ) detoxification by Bt 407 was proposed as follows: AzoR reduces Cr(Ⅵ) to Cr(Ⅲ), which is negatively regulated by PlcR, InhA2, MpbE and SigmaK. The efflux of chromium was conferred by antiporters Efx and ChrA. These results suggested that the resistance of Bt 407 to Cr(Ⅵ) is a complicated network regulated by azoR, efx, chrA, plcR, inhA2, mpbE and sigmaK genes.

References

1 王利平, 代林远, 李鹏. 苏云金芽胞杆菌研究进展[J]. 中国畜牧兽医, 2011, 9 (38): 224-227 [Wang LP, Lin DY, Li P. Research advances on Bacillus thuringiensis [J]. China Anim Husband Vet Med, 2011, 9 (38): 224-227]
2 Feucht A, Evans L, Errington J. Identification of sporulation genes by genome-wide analysis of the sigmaE regulon of Bacillus subtilis [J]. Microbiology, 2003, 149 (Pt10): 3023-3034
3 李雪雁, 李照会, 许维岸. 苏云金芽胞杆菌cry基因研究进展[J]. 昆虫知识, 2003, 40 (1): 9-13 [Li YY, Li ZH, Xu WY. Research advances on the cry genes of Bacillus thuringiensis [J]. Entomol Knowl, 2003, 40 (1): 9-13]
4 Agaisse H, Gominet M, Okstad OA, Kolst? AB, Lereclus D. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis [J]. Mol Microbiol, 1999, 32 (5): 1043-1053
5 Okstad OA, Gominet M, Purnelle B, Rose M, Lereclus D, Kolst? AB.. Sequence analysis of three Bacillus cereus loci carrying PIcR-regulated genes encoding degradative enzymes and enterotoxin [J]. Microbiology, 1999, 145 (Pt11): 3129-3138
6 Gohar M, Faegri K, Perchat S, Ravnum S, ?kstad OA, Gominet M, Kolst? AB, Lereclus D. The PlcR virulence regulon of Bacillus cereus [J]. PLoS One, 2008, 3 (7): e2793
7 Fedhila S, Gohar M, Slamti L, Nel P, Lereclus D. The Bacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient for virulence [J]. J Bacteriol, 2003, 185 (9): 2820-2825
8 Fedhila S, Nel P, Lereclus D. The InhA2 metalloprotease of Bacillus thuringiensis strain 407 is required for pathogenicity in insects infected via the oral route [J]. J Bacteriol, 2002, 184 (12): 3296-3304
9 苏新华. 苏云金芽胞杆菌处理含Cr (VI)废水的研究[D]. 福州: 福建农林大学, 2011 [Su XH. Treatment of wastewater containing Cr (Ⅵ) with Bacillus thuringiensis [D]. Fuzhou: Fujian Agriculture and Forestry, 2011]
10 黄天培, 张巧铃, 潘洁茹, 苏新华, 肖颖, 赖小华, 郭杨菁, 杨晓伟, 康榕, 关雄. 高效还原铬的苏云金芽胞杆菌菌株筛选[J]. 应用与环境生物学报, 2010, 16 (6): 879-882 [Huang TP, Zhang QL, Pan JR, Su XH, Xiao Y, Lai XH, Guo YJ, Yang XW, Kang R, Guan X. Screening of Bacillus thuringiensis with high chromium reducing capacity [J]. Chin J Appl Environ Microbiol, 2010, 16 (6): 879-882]
11 Kanmani P, Aravind J, Preston D. Remediation of chromium contaminants using bacteria [J]. Int J Environ Sci Tech, 2011, 9 (1): 183-193
12 Petrilli FL, De Flora S. Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium [J]. Appl Environ Microbiol, 1977, 33 (4): 805-809
13 刘婉, 李泽琴. 水中铬污染治理的研究进展[J]. 广东微量元素科学, 2007, 9 (14): 5-9 [Liu W, Li ZQ. Progress on research of treating Cr containing wastewater [J]. Guangdong Weiliang Yuansu Kexue, 2007, 9 (14): 5-9]
14 马前, 宋卫峰, 吴斌, 李义久, 倪亚明. 含Cr(Ⅵ)废水生物处理技术及其影响因素[J]. 四川环境, 2001, 4 (20): 19-22 [Ma Q, Song WF, Wu B, Li YJ, Ni YM. Biological treating technology and its factors of Cr (VI)-containing wastewater [J]. Sichuan Environ, 2001, 4 (20): 19-22]
15 Ramírez-Díaz M I, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C. Mechanisms of bacterial resistance to chromium compounds [J]. Biometals, 2008, 21 (3): 321-332
16 Ackerley DF, Gonzalez CF, Park CH, Blake R 2nd, Keyhan M, Matin A. Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli [J]. Appl Environ Microbiol, 2004, 70 (2): 873-882
17 汪频, 李福德, 刘大江. 硫酸盐还原菌还原铬(Ⅵ)的研究[J]. 环境科学, 1993, 14 (6): 1-4 [Wang P, Li DF, Liu DJ. Studies on removing hexavalent chromium by sulfate-reducing bacteria [J]. Chin J Environ Sci, 1993, 14 (6): 1-4]
18 Branco R, Chung AP, Johnston T, Gurel V, Morais P, Zhitkovich A. The chromate-inducible chrBACF operon from the transposable element TnOtChr confers resistance to chromium (VI) and superoxide [J]. J Bacteriol, 2008, 190 (21): 6996-7003
19 Henne KL, Nakatsu CH, Thompson DK, Konopka AE. High-level chromate resistance in Arthrobacter sp. strain FB24 requires previously uncharacterized accessory genes [J]. BMC Microbiol, 2009, 9:199
20 GB 7467-87. 水质 六价铬的测定 二苯碳酰二肼分光光度法[S] [GB 7467-87. Water quality—Determination of chromium (VI)—1,5 Diphenylcarbohydrazide spectrophotometric method [S]]
21 GB 7466-87. 水质总铬的测定[S]. [GB 7466-87. Water quality-Determination of total chromium [S]]
22 Errington J. Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. Microbiol Rev, 1993, 57 (1): 1-33.
23 Bouillaut L, Perchat S, Arold S, Zorrilla S, Slamti L, Henry C, Gohar M, Declerck N, Lereclus D. Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides [J]. Nucleic Acids Res, 2008, 36 (11): 3791-3801
24 Declerck N, Bouillaut L, Chaix D, Rugani N, Slamti L, Hoh F, Lereclus D, Arold ST. Structure of PlcR: insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria [J]. Proc Natl Acad Sci USA, 2007, 104 (47): 18490-18495
25 Slamti L, Lereclus D. Specificity and polymorphism of the PlcR-PapR quorum-sensing system in the Bacillus cereus group [J]. J Bacteriol, 2005, 187 (3): 1182-1187
26 Lereclus D, Agaisse H, Gominet M, Salamitou S, Sanchis V. Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase. J Bacteriol, 1996, 178 (10): 2749-2756
27 Grandvalet C, Gominet M, Lereclus D. Identification of genes involved in the activation of the Bacillus thuringiensis inhA metalloprotease gene at the onset of sporulation. Microbiology, 2001, 147 (Pt7): 1805-1813
28 Hajaij-Ellouze M, Fedhila S, Lereclus D, Nielsen-LeRoux C. The enhancin-like metalloprotease from the Bacillus cereus group is regulated by the pleiotropic transcriptional activator PlcR but is not essential for larvicidal activity [J]. FEMS Microbiol Lett, 2006, 260 (1): 9-16
29 Cervantes C, Ohtake H, Chu L, Misra TK, Silver S. Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505 [J]. J Bacteriol, 1990, 172 (1): 287-291
30 Cervantes C, Silver S. Plasmid chromate resistance and chromate reduction [J]. Plasmid, 1992, 27 (1): 65-71
31 张利莉, 喻子牛. Sigma因子和启动子上游区在苏云金芽胞杆菌杀虫晶体蛋白基因表达调控中的作用[J]. 中国生物工程杂志, 2003, 3 (23): 50-54 [Zhang LL, Xu ZZ. Effect of σ factors and promoter upstream region on regulation of expression of insecticidal crystal protein genes in Bacillus thuringiensis [J]. J Chin Biotech, 2003, 3 (23): 50-54]
32 Hsueh YH, Somers EB, Lereclus D, Wong AC. Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator [J]. Appl Environ Microbiol, 2006, 72 (7): 5089-5092
33 Park CH, Keyhan M, Wielinga B, Fendorf S, Matin A. Purification to homogeneity and characterization of a novel Pseudomonas putida chromate reductase [J]. Appl Environ Microbiol, 2000, 66 (5): 1788-1795
34 Gonzalez CF, Ackerley DF, Lynch SV, Matin A. ChrR, a soluble quinone reductase of Pseudomonas putida that defends against H2O2 [J]. J Biol Chem, 2005, 280 (24): 22590-22595
35 Eswaramoorthy S, Poulain S, Hienerwadel R, Bremond N, Sylvester MD, Zhang YB, Berthomieu C, Van Der Lelie D, Matin A. Crystal structure of ChrR--a quinone reductase with the capacity to reduce chromate [J]. PLoS ONE, 2012, 7 (4): e36017
36 Cheung KH, Gu JD. Mechanism of hexavalent chromium detoxification by microorganisms and bioremediation application potential: a review [J]. Int Biodeter Biodegr, 2007, 59 (1): 8-15
37 Tsibakhashvili NY, Kalabegishvili TL, Rcheulishvili AN, Gintury EN, Lomidze LG, Gvarjaladze DN, Rcheulishvili OA, Holman HY. Effect of Zn (II) on the reduction and accumulation of Cr (VI) by Arthrobacter species [J]. J Ind Microbiol Biotechnol, 2011, 38 (11): 1803-1808
38 Nies DH, Koch S, Wachi S, Peitzsch N, Saier MH Jr.. CHR, a novel family of prokaryotic proton motive force-driven transporters probably containing chromate/sulfate antiporters [J]. J Bacteriol, 1998, 180 (21): 5799-5802

Memo

Memo:
-
Last Update: 2014-10-29