|Table of Contents|

Review of biogas bio-desulfurization process(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2014 02
Page:
328-335
Research Field:
Reviews
Publishing date:

Info

Title:
Review of biogas bio-desulfurization process
Author(s):
XU Ying SUN Yongming YUAN Zhenhong KONG Xiaoying LI Lianhua
1 Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China 2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Keywords:
biogas bio-desulfurization hydrogen sulfide desulfurization bacteria desulfurization process biogas engineering
CLC:
Q939.97 : X172
PACS:
DOI:
10.3724/SP.J.1145.2014.00328
DocumentCode:

Abstract:
With the advantages of cleanliness, efficiency, safety, and renewability, biogas as an alternative and complementary natural gas is becoming the new direction of energy development strategy of China. Biogas desulfurization is one of the key points for biogas high-value utilization and industrial application. The desulfurization process directly impacts equipment operation, product quality and engineering quality. Compared with the traditional desulfurization process, bio-desulfurization has high efficiency, no secondary pollution and low cost, therefore a research hot spot and industrial application for biogas desulfurization. This paper reviews the basic principles of bio-desulfurization, main effective bacteria, desulfurization process, project cases and the latest research and application. The major emphasis of this review is the comparison analysis of the physiological and biochemical characteristics of chemotrophic bacteria, and their desulfurization performance. It also lays emphasis on the application case of two-stage biogas desulfurization process based on the bioscrubber. At last, this review puts forward suggestions on development of bio-desulfurization technology and industrialization in China, including making further technological innovation, doing in-depth research of bio-desulfurization process, as well as increasing the number and expanding scale of engineering applications.

References

1 马建堂. 中国统计年鉴2012 [M]. 北京: 中国统计出版社, 2012 [Ma JT. China Statistical Yearbook 2012 [M]. Beijing: China Statistical Press, 2012]
2 王凯军, 胡超. 生物硫循环及脱硫技术的新进展[J]. 环境保护, 2006 (2): 69-72 [Wang KJ, Hu C. Biological sulfur cycle and new development in desulfurization technology [J]. Environ Prot, 2006 (2): 69-72]
3 Anderson JW. Sulfur in Biology [M]. London: Edward Arnold Limited, 1978
4 Ottengraf SPP, Vandenoever AHC. Kinetics of organic-compound removal from waste gases with a biolobical filter [J]. Biotechnol Bioeng, 1983, 25 (12): 3089-3102
5 McComas C, Sublette KL, Jenneman G, Bala G. Characterization of a novel biocatalyst system for sulfide oxidation [J]. Biotechnol Progr, 2001, 17 (3): 439-446
6 Takano B, Koshida M, Fujiwara Y, Sugimori K, Takayanagi S. Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yugama crater lake, Kusatsu-Shirane volcano, Japan [J]. Biogeochemistry, 1997, 38 (3): 227-253
7 Sorokin DY, Tourova TP, Muyzer G. Isolation and characterization of two novel alkalitolerant sulfidogens from a Thiopaq bioreactor, Desulfonatronum alkalitolerans sp. nov., and Sulfurospirillum alkalitolerans sp. nov. [J]. Extremophiles, 2013, 17 (3): 535-543
8 Odintsova EV, Jannasch HW, Mamone JA, Langworthy TA. Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium [J]. Int J Syst Bacteriol, 1996, 46 (2): 422-428
9 Knittel K, Kuever J, Meyerdierks A, Meinke R, Amann R, Brinkhoff T. Thiomicrospira arctica sp. nov. and Thiomicrospira psychrophila sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments [J]. Int J Syst Evolu Microbiol, 2005, 55: 781-786
10 Kantachote D, Charernjiratrakul W, Noparatnaraporn N, Oda K. Selection of sulfur oxidizing bacterium for sulfide removal in sulfate rich wastewater to enhance biogas production [J]. Electron J Biotechnol, 2008, 11 (2): 1-12
11 范立民, 裘丽萍, 陈家长, 宋超, 胡庚东, 瞿建宏, 孟顺龙, 吴伟. 养殖池塘系统脱氮硫杆菌的分离、生长特性及脱氮特征研究[J]. 农业环境科学学报, 2013, 32 (1): 153-159 [Fan LM, Qiu LP, Chen JC, Song C, Hu GD, Qu JH, Meng SL, Wu W. Isolation and culture of Thiobacillus denitrificans from different area of the intensive pond system and their capacities of removing nitrate [J]. J Agro-environ Sci, 2013, 32 (1): 153-159]
12 Syed MA, Henshaw PF. Effect of tube size on performance of a fixed-film tubular bioreactor for conversion of hydrogen sulfide to elemental sulfur [J]. Water Res, 2003, 37 (8): 1932-1938
13 Sorokin DY, Muntyan MS, Panteleeva AN, Muyzer G. Thioalkalivibrio sulfidiphilus sp. nov., a haloalkaliphilic, sulfur-oxidizing gammaproteobacterium from alkaline habitats [J]. Int J Syst Evol Microbiol, 2012, 62: 1884-1889
14 Kobayashi T, Li YY, Kubota K, Harada H, Maeda T, Yu HQ. Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization [J]. Appl Microbiol Biotechnol, 2012, 93 (2): 847-857
15 Muyzer G, Sorokin DY, Mavromatis K, Lapidus A, Clum A, Ivanova N, Pati A, d’Haeseleer P, Woyke T, Kyrpides NC. Complete genome sequence of “Thioalkalivibrio sulfidophilus” HL-EbGr7[J]. Standard Genomic Sci, 2011, 4 (1): 23-35
16 Vlasceanu L, Popa R, Kinkle BK. Characterization of Thiobacillus thioparus LV43 and its distribution in a chemoautotrophically based groundwater ecosystem [J]. Appl Environ Microbiol, 1997, 63 (8): 3123-3127
17 车轩, 罗国芝, 谭洪新, 吴嘉敏, 蒋燕, 齐巨龙, 孙大川. 脱氮硫杆菌的分离鉴定和反硝化特性研究[J]. 环境科学, 2008, 29 (10): 2931-2937 [Che X, Luo GZ, Tan HX, Wu JM, Jiang Y, Qi JL, Sun DC. Isolation, identification and denitrification characterization of Thilbacillus denitrificans [J]. Environ Sci, 2008, 29 (10): 2931-2937]
18 Wood AP, Woodall CA, Kelly DP. Halothiobacillus neapolitanus strain OSWA isolated from “The Old Sulphur Well” at Harrogate (Yorkshire, England)[J]. Syst Appl Microbiol, 2005, 28 (8): 746-748
19 Peu P, Picard S, Diara A, Girault R, Beline F, Bridoux G, Dabert P. Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates [J]. Bioresour Technol, 2012, 121: 419-424
20 Diaz I, Lopes AC, Perez SI, Fdz-Polanco M. Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion [J]. Bioresour Technol, 2010, 101 (20): 7724-7730
21 Moestedt J, Paledal SN, Schnurer A. The effect of substrate and operational parameters on the abundance of sulphate-reducing bacteria in industrial anaerobic biogas digesters [J]. Bioresour Technol, 2013, 132: 327-332
22 Baspinar A, Turker M, Ozturk I. Biogas desulphurization at technical scale by lithotrophic denitrification: integration of sulphide and nitrogen removal[J]. Process Biochem, 2011, 46 (4): 916-922
23 Chaiprapat S, Mardthing R, Kantachote D, Karnchanawong S. Removal of hydrogen sulfide by complete aerobic oxidation in acidic biofiltration [J]. Process Biochem, 2011, 46 (1): 344-352
24 Soreanu G, Falletta P, Beland M, Edmonson K, Ventresca B, Seto P. Empirical modelling and dual-performance optimisation of a hydrogen sulphide removal process for biogas treatment [J]. Bioresour Technol, 2010, 101 (23): 9387-9390
25 Kobayashi T, Xu KQ, Li YY, Inamori Y. Performance evaluation and effect of biogas circulation rate of a bubble column for biological desulfurization [J]. Water Sci Technol, 2012, 66 (9): 1914-1922
26 Moghanloo GMM, Fatehifar E, Saedy S, Aghaeifar Z, Abbasnezhad H. Biological oxidation of hydrogen sulfide in mineral media using a biofilm airlift suspension reactor [J]. Bioresour Technol, 2010, 101 (21): 8330-8335
27 Koe LCC, Yang F. Evaluation of a pilot-scale bioscrubber for the removal of hydrogen sulphide [J]. J Chart Inst Water Environ Manage, 2000, 14 (6): 432-435
28 Baspinar AB, Turker M, Hocalar A, Ozturk I. Biogas desulphurization at technical scale by lithotrophic denitrification: integration of sulphide and nitrogen removal [J]. Process Biochem, 2011, 46 (4): 916-922
29 Namgung HK, Ahn H, Song J, Development of a two-phase bioreactor for the biological removal of hydrogen sulfide from biogas [G]//Zeng D. 2011 2nd International Conference on Advances in Energy Engineering, 2012. 1143-1148
30 Dumont E, Cabral FDS, Le Cloirec P, Andres Y. Biofiltration using peat and a nutritional synthetic packing material: influence of the packing configuration on H2S removal [J]. Environ Technol, 2013, 34 (9): 1123-1129
31 Chen JM, Jiang LY, Sha HL. Removal efficiency of high-concentration H2S in a pilot-scale biotrickling filter [J]. Environ Technol, 2006, 27 (7): 759-766
32 Aroca G, Urrutia H, Nunez D, Oyarzun P, Arancibia A, Guerrero K. Comparison on the removal of hydrogen sulfide in biotrickling filters inoculated with Thiobacillus thioparus and Acidithiobacillus thiooxidans [J]. Electron J Biotechnol, 2007, 10 (4): 514-520
33 Ramirez M, Manuel Gomez J, Aroca G, Cantero D. Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam [J]. Bioresour Technol, 2009, 100 (21): 4989-4995
34 张学欢, 梁颖, 黄亚洁, 陈宁, 温皓程, 张永奎. 气升式反应器中微生物对H2S的脱除研究[J]. 应用与环境生物学报, 2008, 14 (3): 413-415 [Zhang XH, Liang Y, Huang YJ, Chen N, Wen HC, Zhang YK. Bio-desulfurization in an air-lift reactor [J]. Chin J Appl Environ Biol, 2008, 14 (3): 413-415]
35 Zdeb M. An efficiency of H2S removal from biogas via physicochemical and biological methods - a case study [J]. Rocznik Ochrona Srodowiska, 2013, 15: 551-563
36 汪家铭. Shell-Paques生物脱硫技术及应用[J]. 化肥设计, 2010 (2): 39-42 [Wang JM. Shell-paques biodesulfur technology and its application [J]. Chem Fertil Des, 2010 (2): 39-42]
37 韩芳. 沼气净化技术及储存方式优化分析[J]. 中国沼气, 2012 (3): 50-53 [Han F. Optimization analysis of biogas purification and storage technology [J]. China Biogas, 2012 (3): 50-53]
38 李倩, 蔡磊, 蔡昌达. 热电肥联产大型鸡场废弃物沼气工程技术[J]. 可再生能源, 2009 (1): 97-100 [Li Q, Cai L, Cai CD. Biogas technology combined with heat, power and fertilizer of large scale poultry farm [J]. Renew Energy Resour, 2009 (1): 97-100]

Memo

Memo:
-
Last Update: 2014-05-04