|Table of Contents|

Responses of root system of Lespedeza davurica L. to soil water change(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2014 03
Research Field:
Publishing date:


Responses of root system of Lespedeza davurica L. to soil water change
ZHAO Guojing XU Weizhou GUO Yali WU Aijiao CHEN Ji XU Bingcheng
1State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China 2Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
Lespedeza davurica soil water total root length root surface area root average diameter
Q945.17 : S154.4

This study aimed to clarify the relationship between root morphological characteristics of Lespedeza davurica L. under different soil water conditions. One pot experiment was conducted to investigate the root biomass, total root length, root surface area, root average diameter, specific root length and specific root area under three soil water regimes, i.e. sufficient water supply (HW, 80% FC), moderate water stress (MW, 60% FC) and severe water stress (LW, 40% FC). Besides, at the three main growth periods (budding, flowering and grain filling stage), soil water contents were improved separately from MW to HW, LW to HW and MW, respectively. Root biomass and morphological characteristics under different soil moisture treatments at the end of growth period were measured and calculated. Results showed that root biomass and total root length were significantly higher in the HW than other regimes (P < 0.05), and root surface area, specific root length and specific root area significantly higher in the MW regime than others (P < 0.05). The root average diameter was 0.76-0.94 mm under different water regimes. Positive linear relationships existed between total root length and root biomass as well as root surface area. In summary, sufficient water supply is favorable to root biomass accumulation and morphology formation of L. davurica, and their responses to soil water change are related to the degree of water condition improvement and its growing stage.


1 马守臣, 徐炳成, 王和洲, 杨慎娇, 李凤民. 根系冗余对小麦籽粒产量和水分利用效率的影响[J]. 应用与环境生物学报, 2010, 16 (3): 305-308 [Ma SC, Xu BC, Wang HZ, Yang SJ, Li FM. Effect of root redundancy on grain yield and water use efficiency [J]. Chin J Appl Environ Biol, 2010, 16 (3): 305-308]
2 张承林, 付子轼. 水分胁迫对荔枝幼树根系与梢生长的影响[J]. 果树学报, 2005, 22 (4): 339-342 [Zhang CL, Fu ZS. Impact of water stress on the root and shoot growth of litchi seedlings [J]. J Fruit Sci, 2005, 22 (4): 339-342]
3 朱维琴, 吴良欢, 陶勤南. 作物根系对干旱胁迫逆境的适应性研究进展[J]. 土壤与环境, 2002, 11 (4): 430-433 [Zhu WQ, Wu LH, Tao QN. Advances in the studies on crop root against drought stress [J]. Soil Environ Sci, 2002, 11 (4): 430-433]
4 洪光宇, 鲍雅静, 周延林, 李政海, 黄朔, 元征征. 退化草原羊草种群根系形态特征对水分梯度的响应[J]. 中国草地学报, 2013, 1 (35): 73-78 [Hong GY, Bao YJ, Zhou YL, Li ZH, Yuan ZZ. Response of root system of Leymus chinensis population to water gradient in degraded grassland [J]. Chin J Grassland, 2013, 1 (35): 73-78]
5 Ostonen I, Lohmus K, Helmisaarii H, Truu J, Meel S. Fine root morphological adaptations in Scots pine. Norway spruce and silver birch along a latitudinal gradient in boreal forests [J]. Tree Physiol, 2007, 27: 1627-1634
6 Alverez-Uria P, Korner C. Fine root traits in adult trees of evergreen and deciduous taxa from low and high elevation in the Alps [J]. Alp Bot, 2011, 121: 107-112
7 马廷臣, 余蓉蓉, 陈荣军, 曾汉来, 张端品. PEG-6000模拟干旱对水稻幼苗期根系的影响[J]. 中国生态农业学报, 2010, 18 (6): 1206-1211 [Ma TC, Yu RR, Chen RJ, Zeng HL, Zhang RP. Effect of drought stress simulated with PEG-6000 on root system in rice seedling [J]. Chin J Ecol Agric, 2010, 18 (6): 1206-1211]
8 Ostonen I, Püttsepp ?, Biel C, Alberton O, Bakker MR, L?hmus K, Majdi H, Metcalfe D, Olsthoorn AFM, Pronk A, Vanguelova E, Weih M and Brunner I. Specific root length as an indicator of environmental change [J]. Plant Biosyst, 2007, 141 (3): 426-442
9 Garcia A, Gonzalez MC. Morphological markers for the early selection of drought tolerant rice varieties [J]. Cult Trop, 1997, 18 (2): 47-50
10 梁银丽. 土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J]. 生态学报, 1996, 16 (3): 258-264 [Liang YL. The adjustment of soil water and nitrogen phosphorus nutrition on root system growth of wheat and water use [J]. Acta Ecol Sin, 1996, 16 (3): 258-264]
11 柏彦超. 不同水、氮条件对水稻生长及部分生理特征的影响[D]. 扬州: 扬州大学, 2008. 9-10 [Bo YC. Effect of different water stress and nitrogen forms on growth and physiological characteristics of rice [D]. Yangzhou: Yangzhou University, 2008. 9-10]
12 Burton AJ, Pregitzer KS, Hendrick RL. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests [J]. Oecologia, 2000, 125: 389-399
13 Peter S, Han O. Biomass partitioning, architecture and turn over of six herbaceous species from habitats with different nutrient supply [J]. Plant Ecol, 2000, 149: 219-231
14 Comas LH, Eissenstat DM. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species [J]. Funct Ecol, 2004, 18: 388-397
15 Esssenstat DM , Caldwell MM. Competitive ability is linked to rates of water extraction: a field study of two arid land tussock grasses [J]. Oecologia, 1989, 71: 1-7
16 孙启忠, 韩建国, 桂荣, 李志勇, 刘国荣. 科尔沁沙地达乌里胡枝子生物量研究[J]. 中国草地, 2001, 23 (4): 21-26 [Sun QZ, Han JG, Gui R, Li ZY, Liu GR Biomass in Lespedeza davurica [J]. Grassland Chin, 2001, 23 (4): 21-26]
17 孙启忠, 玉柱, 徐丽君, 赵淑芬, 张志茹. 尖叶胡枝子和达乌里胡枝子地上生物量累积研究[J]. 干旱区研究, 2008, 25 (1): 82-89 [Sun QZ, Yu Z, Xu LJ, Zhao SF, Zhang ZR. Study on the accumulation of aboveground biomass of Lespedeza hedysaroides and L. davurica [J]. Aird Zone Res, 2008, 25 (1): 82-89]
18 黄瑾, 姜峻, 徐炳成. 黄土丘陵区达乌里胡枝子人工草地生产力与土壤水分特征研究[J]. 中国农学通报, 2005, 21 (6): 245-248 [Huang J, Jiang J, Xu BC. Study on the aboveground biomass production and soil water of artificial Lespedeza davurica grasslands in loess hilly-gully region [J]. Chin Agric Sci Bull, 2005, 21 (6): 245-248]
19 朱志诚. 陕北森林草原地带的植物群落类型I.疏林草原与灌木草原[J]. 中国草原, 1982, 4 (2): 1-8 [Zhu ZC. Plant community types of forest steppe zone in northern Shaanxi: steppe and shrub savanna [J]. Chin Grassland, 1982, 4 (2): 1-8 ]
20 张晓红, 徐炳成, 李凤民. 密度对三种豆科牧草生产力和水分利用率的影响[J]. 草地学报, 2007, 15 (6): 593-598 [Zhang XH, Xu BC, Li FM. Effect of planting density on the productivity and WUE of three legumes in highland of Loess Plateau [J]. Acta Agric Sin, 2007, 15 (6): 593-598]
21 Xu BC, Xu WZ, Huang J, Shan L, Li FM. Biomass production and relative competitiveness of a C3 legume and a C4 grass co-dominant in the semiarid Loess Plateau of China [J]. Plant Soil, 2011, 347: 25-39
22 徐炳成, 山仑, 李凤民. 半干旱黄土丘陵区五种植物的生理生态学特征比较[J]. 应用生态学报, 2007, 18 (5): 992-998 [Xu BC, Shan L, Li FM. Comparison of ecophysiological characteristics of seven plant species in semiarid loess hilly-gully region [J]. J Appl Ecol, 2007, 18 (5): 992-998]
23 Saidi A, Ookawa T, Hirasawa T. Responses of root growth to moderate soil water deficit in wheat seedlings [J]. Plant Prod Sci, 2010, 13 (3): 261-268
24 Motzo R, Atenne G, Deidda M. Genotypic variation in durum wheat root systems at different stages of development in a mediterranean environment [J]. Euphytica, 1993, 66: 197-206
25 张小全. 环境因子对树木细根生物量、生产与周转的影响[J]. 林业科学研究, 2001, 14 (5): 566-573 [Zhang XQ. Fine-root biomass, production and turnover of trees in relations to environmental conditions [J]. For Res, 2001, 14 (5): 566-573]
26 Eissenstat DM. On the relationship between specific root length and the rate of root proliferation: a field study using citrus root stocks [J]. New Phytol, 1991, 118: 63-68
27 施积炎, 袁小凤, 丁贵杰. 作物水分亏缺补偿与超补偿效应的研究现状[J]. 山地农业生物学报, 2000, 19 (3): 226-233 [Shi JY, Yuan XF, Ding GJ. The reviews of study on water deficit compensation and over compensation effect for crops[J]. Mount Agric Biol, 2000, 19 (3): 226-233]
28 赵忠, 成向荣, 薛文鹏, 王迪海, 袁志发. 黄土高原不同水分生态区刺槐细根垂直分布的差异[J]. 林业科学, 2006, 42 (11): 1-7 [Zhao Z, Cheng XR, Xue WP, Wang DH, Yuan ZF. Difference of Fine Root vertical distribution of Robinia pseudoacacia under the different climate regions in the Loess Plateau. Sci Silvae Sin, 2006, 42 (11): 1-7]
29 于立忠, 丁国泉, 史建伟, 于水强, 朱教君, 赵连富.施肥对日本落叶松人工林细根直径、根长和比根长的影响[J]. 应用生态学报, 2007, 5 (18): 957-962 [Yu LZ, Ding GQ, Shi JW, Yu SQ, Zhu JJ, Zhao LF. Effects of fertilization on fine root diameter, root length and specific root length in Larix kaempferi plantation [J]. Chin J Appl Ecol, 2007, 5 (18): 957-962]
30 van der Weele CM, Spollen WG, Sharp RE and Baskin TI. Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media [J]. J Exp Bot, 2000, 51: 1555-1562
31 Zamora DS, Jose S, Nair PKR. Morphological plasticity of cotton roots in response to interspeci?c competition with pecan in an alleycropping system in the southern United States [J]. Agrofor Syst, 2007, 69: 107-116
32 Eissenstat DM. Costs and benefits of constructing roots of small diameter [J]. J Plant Nutr, 1992, 15: 763-782
33 Pregitzer KS, De Forest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL. Fine root architecture of nine North American trees [J]. Ecol Monogr, 2002, 72: 293-309
34 杨罗锦, 陶洪斌, 王璞. 种植密度对不同株型玉米生长及根系形态特征的影响[J]. 应用与环境生物学报, 2012, 18 (6): 1009-1013 [Yang LJ, Tao HB, Wang P. Effect of planting density on plant growth and root morphology of maize [J]. Chin J Appl Environ Biol, 2012, 18 (6): 1009-1013]
35 Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Liu GG, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak J. Assessing the response of terrestrial ecosystems to potential changes in precipitation [J]. BioScience, 2003, 53: 941-952


Last Update: 2014-07-01