|Table of Contents|

Genome-wide Analysis of WRKY Transcription Factors in Solanum tuberosum(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2013 02
Research Field:
Publishing date:


Genome-wide Analysis of WRKY Transcription Factors in Solanum tuberosum
HUANG Shengxiong LIU Yongsheng
(1Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China)
(2School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China)
transcriptional factor WRKY potato phylogenetic analysis expression pattern defense response against stress
S532: Q349+.501

The WRKY transcription factor family is widely involved in regulating plant development and defense response against various biotic and abiotic stresses. The Hidden Markov Model Profile (HMM) of WRKY domain was used to identify WRKY transcription factors in potato genome with HMMER 3.0. All together 81 potato WRKY transcription factors were identified and then classified into three main groups, with 5 subgroups in Group Ⅱ, namely Ⅱ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d, and Ⅱ-e. The constructed phylogenetic tree of WRKY genes among potato, Arabidopsis and rice demonstrated that the distinct gene expansion events occurred in the genome of potato and rice, respectively, while the gene expansion of Group Ⅱ-e was unique in potato genome. The potato WRKY transcription factors showed similar motif compositions within each group, but different ones among different groups, though several conserved motifs were shared by all. Furthermore, 28 potato WRKY genes showed distinct expression patterns in response to stresses of wounding, drought, salt, and virus invasion. The expressions of several potato WRKY genes were significantly up/down-regulated, implying that these members might participate in regulating the defense response against various biotic and abiotic stresses. Fig 4, Tab 2, Ref 33


1 Solanaceae Source. PBI Solanum: A worldwide treatment [EB/OL]. http://www.nhm.ac.uk/solanaceaesource/
2 Fernie AR, Willmitzer L. Molecular and biochemical triggers of potato tuber development [J]. Plant Physiol, 2001, 127 (4): 1459-1465
3 Dellagi A, Heilbronn J, Avrova AO, Montesano M, Palva ET, Stewart HE, Toth IK, Cooke DEL, Lyon GD, Birch PRJ. A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp. atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression [J]. Mol Plant Microbe Interact, 2000, 13 (10): 1092-1101
4 Ballvora A, Ercolano MR, Weiss J, Meksem K, Bormann CA, Oberhagemann P, Salamini F, Gebhardt C. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes [J]. Plant J, 2002, 30 (3): 361-371
5 Tang L, Kwon SY, Kim SH, Kim JS, Choi JS, Cho KY, Sung CK, Kwak SS, Lee HS. Enhanced tolerance of transgenic potato plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against oxidative stress and high temperature [J]. Plant Cell Rep, 2006, 25 (12): 1380-1386
6 Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin, NV, Kolganova TV, Beletsky AV, Mardanov AV, Di Genova A, Bolser DM, Martin DM, Li G, Yang Y, Kuang H, Hu Q, Xiong X, Bishop GJ, Sagredo B, Mejia N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang S, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Zhang Y, Xie B, Du Y, Qu D, Bonierbale M, Ghislain M, Herrera Mdel R, Giuliano G, Pietrella M, Perrotta G, Facella P, O’Brien K, Feingold SE, Barreiro LE, Massa GA, Diambra L, Whitty BR, Vaillancourt B, Lin H, Massa AN, Geoffroy M, Lundback S, DellaPenna D, Buell CR, Sharma SK, Marshall DF, Waugh R, Bryan GJ, Destefanis M, Nagy I, Milbourne D, Thomson SJ, Fiers M, Jacobs JM, Nielsen KL, Sonderkaer M, Iovene M, Torres GA, Jiang J, Veilleux RE, Bachem CW, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, Hekkert BL, Goverse A, van Ham RC, Visser RG. Genome sequence and analysis of the tuber crop potato [J]. Nature, 2011, 475 (7355): 189-195
7 Burley SK, Kamada K. Transcription factor complexes [J]. Curr Opin Struct Biol, 2002, 12 (2): 225-230
8 Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes [J]. Science, 2000, 290 (5499): 2105-2110
9 Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) [J]. Science, 2002, 296 (5565): 92-100
10 Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA . Genome sequence of the palaeopolyploid soybean [J]. Nature, 2010, 463 (7278): 178-183
11 Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors [J]. Trends Plant Sci, 2000, 5 (5): 199-206
12 Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors [J]. Trends Plant Sci, 2010, 15 (5): 247-258
13 Ciolkowski I, Wanke D, Birkenbihl RP, Somssich IE. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function [J]. Plant Mol Biol, 2008, 68 (1-2): 81-92
14 Wu KL, Guo ZJ, Wang HH, Li J. The WRKY family of transcription factors in rice and Arabidopsis and their origins [J]. DNA Res, 2005, 12 (1): 9-26
15 Zhang Y, Wang L. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants [J]. BMC Evol Biol, 2005, 5 (1): 1
16 Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants [J]. Plant Biotechnol J, 2008, 6 (5): 486-503
17 Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato [J]. Mol Gen Genet, 1994, 244 (6): 563-571
18 Bhattarai KK, Atamian HS, Kaloshian I, Eulgem T. WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi-1 [J]. Plant J, 2010, 63 (2): 229-240
19 Liu JJ, Ekramoddoullah AKM. Identification and characterization of the WRKY transcription factor family in Pinus monticola [J]. Genome, 2009, 52 (1): 77-88
20 UIker B, Somssich IE. WRKY transcription factors: from DNA binding towards biological function [J]. Curr Opin Plant Biol, 2004, 7 (5): 491-498
21 Eulgem T, Somssich IE. Networks of WRKY transcription factors in defense signaling [J]. Curr Opin Plant Biol, 2007, 10 (4): 366-371
22 Pandey SP, Somssich IE. The role of WRKY transcription factors in plant immunity [J]. Plant Physiol, 2009, 150 (4): 1648-1655
23 WRKY transcription factor family [EB/OL]. http://www.arabidopsis.org/browse/genefamily/WRKY.jsp
24 Ross CA, Liu Y, Shen QJ. The WRKY gene family in rice (Oryza sativa) [J]. J Integr Plant Biol, 2007, 49 (6): 827-842
25 HMMER 3.0 [EB/OL]. http://hmmer.janelia.org/
26 Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23 (21): 2947-2948
27 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Mol Biol Evol, 2011, 28 (10): 2731-2739
28 Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J. TM4 microarray software suite [J]. Methods Enzymol, 2006, 411: 134-193
29 Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens [J]. BMC Plant Biol, 2008, 8 (1): 68
30 Journot-Catalino N, Somssich IE, Roby D, Kroj T. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana [J]. Plant Cell, 2006, 18 (11): 3289-3302
31 Kim KC, Lai Z, Fan B, Chen Z. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense [J]. Plant Cell, 2008, 20 (9): 2357-2371
32 Chen H, Lai Z, Shi J, Xiao Y, Chen Z, Xu X. Roles of Arabidopsis WRKY18, WRKY40 and WRKY60 transcription factors in plant responses to abscisic acid and abiotic stress [J]. BMC Plant Biol, 2010, 10 (1): 281
33 王燕华, 何水林. 植物诱导抗病性的分子生物学研究进展[J]. 应用与环境生物学报, 2004, 10 (6): 811-815 [Wang YH, He SL. Molecular biology research of plant-induced disease resistance [J]. Chin J Appl Environ Biol, 2004, 10 (6): 811-815]


Last Update: 2013-05-02