|Table of Contents|

Molecular Mechanism of Solar Energy Harvesting by Purple Photosynthetic Bacteria(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2011 01
Page:
138-143
Research Field:
Reviews
Publishing date:

Info

Title:
Molecular Mechanism of Solar Energy Harvesting by Purple Photosynthetic Bacteria
Author(s):
WANG Wanneng CHEN Guoping HU Zongli LI Jinzhe & HE Shuai
(1College of Bioengineering, Chongqing University, Chongqing 400030, China)
(2College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing 400054, China)
Keywords:
purple photosynthetic bacteria solar energy light-harvesting protein molecular mechanism
CLC:
Q937
PACS:
DOI:
10.3724/SP.J.1145.2011.00138
DocumentCode:

Abstract:
Photosynthesis is arguably the most important biological process, by it organisms harvest solar energy and transfer it into chemical energy for growth and reproduction. The photosynthetic bacteria are the earliest microbe with photosynthesis found on earth. The photosynthetic apparatus of purple bacteria is a nanometric assembly in the intracytoplasmic membranes and consists of pigment-protein complexes, the photosynthetic RC (Reaction center) and LH (Light harvesting). The primary processes of photosynthesis involve absorption of photons by LH complexes, transfer of excitation energy from the LH complexes to the photosynthetic RC, where the primary energy conversion takes place. The researches on molecular structure and mechanism of purple photosynthetic bacteria harvesting solar energy were summarized. Molecular biology techniques and spectroscopic analysis were applied to research the expression and function of puc2BA and pucsBA by the authors, and it was concluded that the puc2BA gene was normally expressed in Rhodobacter sphaeroides, the pucsBA gene of Rhodovulum sulfidophilum and the pufBA gene of R. sphaeroides were expressed in R. sphaeroides, and the heterologous LHII and native LHI were produced and assembled in the membrane. Fig 3, Ref 48

References

1 Bahatyrova S, Frese RN, Siebert CA, Olsen JD, Van Der Werf KO, Van Grondelle R, Niederman RA, Bullough PA, Otto C, Hunter CN. The native architecture of a photosynthetic membrane. Nature, 2004, 430: 1058~1062
2 Garcia-Martin A, Kwa LG, Strohmann B . Structural role of (bacterio) chlorophyll ligated in the energetically unfavorable beta-position. J Biol Chem, 2006, 281: 10626~10634
3 Fowler GJS, Sockalingam GD, Robert B, Hunter CN. Blue shifts in bacteriochlorophyll absorbance correlate with changed hydrogen bonding patterns in light-harvesting LH2 mutants of Rhodobacter sphaeroides with alterations at a Tyr44 and a Tyr45. Biochem J, 1994, 299: 695~700
4 Hu XC, Damjanovi? A, Ritz T, Schulten K. Photosynthetic apparatus of purple bacteria. Q Rev Biophys, 2002, 35: 1~62
5 Gudowska-Nowak E, Newton MD, Fajer J. Conformational and environmental effects on bacteriochlorophyll optical spectra: Correlations of calculated spectra with structural results. J Phys Chem, 1990, 94: 5795~5801
6 Kwa LG, García-Martín A, Végh AP, Strohmann B , Robert B , Braun P. Hydrogen bonding in a model bacteriochlorophyll-binding site drives assembly of light harvesting complex. J Biol Chem, 2004, 279 (15): 15067~15075
7 Barz WP, Francia F, Venturoli G, Melandri BA, Verméglio A, Oesterhelt D. Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 1. PufX is required for efficient light-driven electron transfer and photophosphorylation under anaerobic conditions. Biochemistry, 1995, 34: 15235~15247
8 Koblízek M, Shih JD, Breitbart SI, Ratcliffe EC, Kolber ZS, Hunter CN, Niederman RA. Sequential assembly of photosynthetic units in Rhodobacter sphaeroides as revealed by fast repetition rate analysis of variable bacteriochlorophylla fluorescence. Biochim Biophys Acta, 2005, 1706: 220~231
9 Barz WP, Verméglio A, Francia F, Venturoli G, Melandri BA, Oesterhelt D. Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required of efficient ubiquinone/ubiquinol exchange between the reaction centre Q(B) site and the cytochrome b/c1complex. Biochemistry, 1995, 34: 15248~15258
10 Palsdottir H, Hunte C. Lipids in membrane protein structures. Biochim Biophys Acta, 2004, 1666: 2~18
11 Hunte C. Specific protein-lipid interactions in membrane proteins. Biochem Soc Trans, 2005, 33: 938~942
12 Francia F, Wang J, Zischka H, Venturoli G, Oesterhelt D. Role of the N-and C-terminal regions of the Pufx protein in the structural organization of the photosynthetic core complex of Rhodobacter sphaeroides. Eur J Biochem, 2002, 269: 1877~1885
13 Cogdell RJ, Isaacs NW, Freer AA, Arrelano J, Howard TD, Papiz MZ, Hawthornthwaite-Lawless AM, Prince S. The structure and function of the LH2 (B800-850) complex from the purple photosynthetic bacterium Rhodopseudomonas acidophila strain 10050. Prog Biophys & Mol Biol, 1997, 68: 1~27
14 Deinum G, Otte SCM, Gardiner AT, Aartsma TJ, Cogdell RJ, Amesz J. Antenna organisation of Rhodopseudomonas acidophila: A study of the excitation migration. Biochim Biophys Acta, 1991, 1060: 125~131
15 Freer A, Prince S, Sauer K, Papiz M, Lawless A H, McDermott G, Cogdell R, Isaacs NW. Pigment protein interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure, 1996, 4: 449~462
16 Willett J, Smart JL, Bauer CE. RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. J Bacteriol, 2007, 189 (21): 7765~7773
17 Iustman LJ, Pucheu NL, Kerber NL, Vandekerckhove J, Tadros MH, Garcia AF. Phosphorylation of LHI ß during membrane synthesis in the photosynthetic bacterium Rhodovulum sulfidophilum. Current Microbiol, 2001, 42: 323~329
18 Schubert A , Stenstam A, Beenken WJD, Herek JL, Cogdell R, Pullerits T, Sundstrom V. In vitro self-assembly of the light harvesting pigment-protein LH2 revealed by ultrafast spectroscopy and electron microscopy. Biophys J, 2004, 86: 2363~2373
19 Herek JL, Fraser N J, Pullerits T, Martinsson P, Polívka T, Scheer H, Cogdell RJ, Sundström V. B800 -> B850 energy transfer mechanism in bacterial LH2 complexes investigated by B800 pigment exchange. Biophys J, 2000, 78: 2590~2596
20 Fowler GJS, Visschers RW, Grief GG, van Grondeller R, Hunter CN. Genetically modified photosynthetic antenna complexes with blue-shifted absorbance bands. Nature, 1992, 355: 848~850
21 Jia C (贾诚), Zhu X (朱恂), Tian X (田鑫), Liao Q (廖强), Wang YZ (王永忠), Xie XW (谢学旺). Effect of initial glucose concentration on glucose transmembrane transportation and metabolism of hydrogen-producing photosynthetic bacteria. Chin J Appl Environ Biol (应用与环境生物学报), 2010, 16 (2): 264~268
22 Saga Y, Tamiaki H. Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria. J Biosci & Bbioeng, 2006, 102: 118~123
23 Masuda S, Tomida Y, Ohta H, Takamiya K. The critical role of a hydrogen bond between Gln63 and Trp104 in the blue-light sensing BLUFdomain that controls AppA activity. J Mol Biol, 2007, 368 (5): 1223~1230
24 Han Y, Braatsch S, Osterloh L, Klug G. A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium Rhodobacter sphaeroides 2.4.1. Proc Nat Acad Sci, 2004, 101: 12306~12311
25 Ma F, Kimura Y, Zhao XH, Wu YS, Wang P, Fu LM , Wang ZY, Zhang JP. Excitation dynamics of two spectral forms of the core complexes from photosynthetic bacterium Thermochromatium tepidum. Biophys J, 2008, 95 (7): 3349~3357
26 Bauer CE, Bird TH. Regulatory circuits controlling photosynthesis gene expression. Cell, 1996, 85: 5~8
27 Kim YJ, Ko IJ, Lee JM, Kang HY, Kim YM, Kaplan S, Oh JI. Dominant role of the cbb3 oxidase inregulation of photosynthesis gene expression through the PrrBA system in Rhodobacter sphaeroides 2.4.1. J Bacteriol, 2007, 189 (15): 5617~5625
28 Kwa LG , Wegmann D , Brügger B, Wieland FT, Wanner G, Braun P. Mutation of a single residue, β-glutamate-20, alters protein-lipid interactions of light harvesting complex II. Mol Microbiol, 2008, 67: 63~77
29 He Z, Sundström V, Pullerits T. Intermolecular hydrogen bonding between carotenoid and bacteriochlorophyll in LH2. FEBS Lett, 2001, 496: 36~39
30 Francke C, Amesz J. The size of the photosynthetic unit in purple bacteria. Photosyn Res, 1995, 46: 347~352
31 Han Y, Meyer MH, Keusgen M, Klug G. A haem cofactor is required for redox and light signaling by the AppA proteinof Rhodobacter sphaeroides. Mol Microbiol, 2007, 64 (4): 1090~1104
32 Hoffman E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diederichs K. Structural basis of light-harvesting by carotenoids: Peridinin-chlorophyll-protein from Anphidinium carterae. Science, 1996, 272: 1788~1791
33 Cogdell RJ, Durant I, Valentine J, Lindsay JG, Schmidt K. The isolation and partial characterisation of the light-harvesting pigment protein complexes of Rhodopseudomonas acidophila. Biochim Biophys Acta, 1983, 722: 427~435
34 Happ HN, Braatsch S, Broschek V, Osterloh L, Klug G. Light-dependent regulation of photosynthesis genes in Rhodobacter sphaeroides 2.4.1 is coordinately controlled by photosynthetic electron transport via the PrrBA two-component system and the photoreceptor AppA. Mol Microbiol, 2005, 58 (3): 903~914
35 Jager A, Braatsch S, Haberzettl K, Metz S, Osterloh L, Han YC, Klug G. The AppA and PpsR proteins from Rhodobacter sphaeroides can establish a redox-dependent signal chain but fail to transmit blue-light signals in other bacteria. J Bacteriol, 2007, 189 (6): 2274~2282
36 Gardiner AT, MacKenzie RC, Barrett SJ, Kaiser K, Cogdell RJ. The purple photosynthetic bacterium Rhodopseudomonas acidophila contains multiple puc peripheral antenna complex (LH2) genes: Cloning and initial characterisation of four β/α pairs. Photosyn Res, 1996, 49: 223~235
37 Tadros MH, Waterkamp K. Multiple copies of the coding regions for the light-harvesting B800-850 α and -polypeptides are present in the Rhodopseudomonas palustris genome.EMBO J, 1989, 8: 1303~1308
38 Tadros MH, Katsiou E, Hoon MA, Yurkova N, Ramji DP. Cloning of a new antenna gene cluster and expression and expression analysis of the antenna gene family of Rhodopseudomonas palustris. Eur J Biochem, 1993, 217: 867~875
39 Wang WN, Hu ZL, Li JZ, Chen GP. Expression characterization and actual function of the second pucBA in Rhodobacter sphaeroides. Biosci Rep, 2009, 29: 165~172
40 Wang WN, Hu ZL, Li JZ, Chen GP. Characteristics of light-harvesting II mutant of Rhodobacter sphaeroides with alterations at the transmembrane helices of β-subunit. Biochemistry (Moscow), 2009, 74 (7): 807~812
41 Wang WN, Hu ZL, Chen XQ, Zhao ZP, Li JZ, Chen GP. Heterologous synthesis and assembly of functional LHii antenna complexes from Rhodovulum sulfidophilum in Rhodobacter sphaeroides mutant. Mol Biol Rep, 2009, 36 (7): 1695~1702
42 Deisenhofer J, Epp O, Miki K, Huber R, Michel H. Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature, 1985, 318: 618~624
43 Cogdell RJ, Fyfe PK, Barrett SJ, Prince SM, Freer AA , Isaacs NW, McGlynn P, Hunter CN. The purple bacterial photosynthetic unit. Photosynt Res, 1996, 48: 55~63
44 Shimada H, Ishida K, Machiya Y, Takamiya K. Isolation of SIP, a protein that Interacts with SPB, a possible transcriptional regulatory factor in Rhodobacter sphaeroides. Plant & Cell Physiol, 2007, 48 (10): 1504~1508
45 Ouchane S, Picaud M, Therizoles P, Reiss-Husson F, Astier C. Global regulation of photosynthesis and respiration by FnrL: The first two targets in the tetrapyrrole pathway. J Biol Chem, 2007, 282 (10): 7690~7699
46 Geyer T. On the effects of PufX on the absorption properties of the light-harvesting complexes of Rhodobacter sphaeroides. Biophys J, 2007, 93 (12): 4374~4381
47 Oh JI, Ko IJ, Kaplan S. Reconstitution of the Rhodobacter sphaeroides cbb3-PrrBA signal transduction pathway in vitro. Biochem J, 2004, 43 (24): 7915~7923
48 Dong C, Elsen S, Swem LR, Bauer CE. AerR, a second aerobic repressor of photosynthesis gene expression in Rhodobacter capsulatus. J Bacteriol, 2002, 5: 2805~2814

Memo

Memo:
-
Last Update: 2011-02-28