|Table of Contents|

Application of molecular biological techniques for analysis of nitrifying communities in wastewater treatment(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2010 01
Page:
135-142
Research Field:
Reviews
Publishing date:

Info

Title:
Application of molecular biological techniques for analysis of nitrifying communities in wastewater treatment
Author(s):
LI Lei ZENG Wei ZHANG Yue YANG Yingying
(College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China)
Keywords:
nitrifier community molecular biological technique fluorescent in situ hybridization (FISH) polymerase chain reaction (PCR) stable isotope probing (SIP) biological wastewater treatment
CLC:
X703.1 : X172
PACS:
DOI:
10.3724/SP.J.1145.2010.00135
DocumentCode:

Abstract:
Molecular biological techniques have provided a cultivation-independent means for the identification of environmental microorganisms. The molecular biological techniques based on fluorescent in situ hybridization (FISH) and polymerase chain reaction (PCR) were introduced, including FISH-MAR, FISH-microelectrodes, Clone-FISH, SIP, PCR-DGGE-cloning-sequencing, PCR-T-RFLP, real-time fluorescent quantitative PCR and RT-PCR. The mechanisms and applications of these techniques in the investigation of nitrifier communities in wastewater treatment systems were studied. By using these techniques, the nitrifier communities could be identified in the systems, and the correlation between the dynamic variation in the nitrifier communities and the operating parameters of the systems could be established, and the real state of the system operation could also be analyzed and proved directly and reliably. The results from this study provide theoretical supports for the long-range stable operation of the wastewater treatment systems, and this paper puts forward some suggestions for the future application of those techniques in this field. Fig 5, Tab 1, Ref 53

References

1 Amann R, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995, 59 (1): 143~169
2 Wagner M, Amann RI, Kampfer P, Assmus B, Hartmann A, Hutzler P, Springer N, Schleifer KH. Indentification and in situ detection of Gram-negative filamentous bacteria in activated sludge. Syst Appl Microbiol , 1994, 17 (3): 405~417
3 Christensson M, Blackall LL, Welander T. Metabolic transformations and characterisation of the sludge community in an enhanced biological phosphorus removal system. Appl Microbiol Biotechnol, 1998, 49 (2): 226~234
4 Peng YZ, Yang Q, Liu XH, Zeng W, Mino T, Satoh H. Achieve nitrogen removal via nitrite form municipal wastewater at low temperatures using real-time control to optimize nitrifying communities. Environ Sci Technol, 2007, 41 (23): 8159~8164
5 Zhang D (张丹), Xu H (徐慧), Liu YP (刘耀平), Zhang Y (张颖), Chen GX (陈冠雄), Cleemput O, Willy V. Performance and molecular monitoring of nitrifying bacteria in nitrification stage of OLAND system. Chin J Appl Environ Biol (应用与环境生物学报), 2003, 9 (5): 530~533
6 Wilderer PA, Bungartzb HJ, Lemmer H, Wagner M, Keller J, Wuertz S. Modern scientific methods and their potential in wastewater science and technology. Water Res, 2002, 36 (2): 370~393
7 Lee N, Nielsen PH, Andreasen KH, Juretschko S, Nielsen JL, Schleifer KH, Wagner M. Combination of fluorescent in situ hybridization and microautoradiography-a new tool for structure-function analyses in microbial ecology. Appl Environ Microbiol, 1999, 65 (3): 1289~1297
8 Kindaichi T, Ito T, Okabe S. Eco-physiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by MAR-FISH. Appl Environ Microbiol, 2004, 70 (3): 1641~1650
9 Okabe S, Kindaichi T, Ito T. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl Environ Microbiol, 2005, 71 (7): 3987~3994
10 Gieseke A, Nielsen JL, Amann R, Nielsen PH, Beer DD. In situ substrate conversion and assimilation by nitrifying bacteria in a model biofilm. Appl Environ Microbiol, 2005, 7 (9): 1392~1404
11 Schramm A, Larsen LH, Revsbech NP, Amsing NB, Amann R, Schleifer KH. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol, 1996, 62 (12): 4641~4647
12 Schramm A, Beer DD, Heuvel JC, Ottengraf S, Amann R. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl Environ Microbiol, 1999, 65 (8): 3690~3696
13 Gieseke A, Purkhold U, Wagner M, Amann R, Schramm A. Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol, 2001, 67 (3): 1351~1362
14 Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol, 1999, 65 (7): 3182~3191
15 Satoh H, Okabe S, Yamaguchi Y, Watanabe Y. Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode. Water Res, 2003, 37 (9): 2206~2216
16 Okabe S, Santegoeds CM, Beer DD. Effect of nitrite and nitrate on in situ sulfide production in an activated sludge immobilized agar gel film as determined by use of microelectrodes. Biotechnol Bioeng, 2003, 81 (5): 570~577
17 Schramm A, Fuchs BM, Nielsen JL, Tonolla M, Stahl DA. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environl Microbiol, 2002, 4 (11): 713~720
18 Simon HM, Dodsworth JA, Goodman RM. Crenarchaeota colonize terrestrial plant roots. Environ Microbiol, 2000, 2 (5): 495~505
19 Tonolla M, Demarta A, Peduzzi S, Hahn D, Peduzzi R. In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl Environ Microbiol, 2000, 66 (2): 820~824
20 Liu ZP (刘志培), Liu SJ (刘双江). Advances in the molecular biology of nitrifying microorganisms. Chin J Appl Environ Biol (应用与环境生物学报), 2004, 10 (4): 521~525
21 Hommes NG, Sayavedra-Soto LA, Arp DJ. Mutagenesis and expression of amo, which codes for ammonia monooxygenase in nitrosomonas europaea. J Bacteriol, 1998, 180 (13): 3353~3359
22 Purkhold U, Wagner M, Timmermann G, Pommerening A, Koops HP. 16S rRNA and amoA based phylogeny of 12 novel betaproteobacterial ammonia-oxidizing isolates: Extension of the dataset and proposal of a new lineage within the nitrosomonads. Int J Syst Evol Microbiol, 2003, 53 (5): 1485~1494
23 Aakra A, Utaker JB, Nes IF. Comparative phylogeny of the ammonia monooxygenase subunit A and 16S rRNA genes of ammonia-oxidizing bacteria. FEMS Microbiol Lett, 2001, 205: 237~242
24 Nicolaisen MH, Ramsing NB. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria. J Microbiol Methods, 2002, 50 (2): 189~203
25 Rotthauwe JH, Boer W, Liesack W. Comparative analysis of gene sequences encoding ammonia monooxygenase of Nitrosospira sp. AHB1 and Nitrosolobus multvormis C-71. FEMS Microbiol Lett, 1995, 133: 131~135
26 Hoshino T, Noda N, Tsuneda S, Hirata A, Inamori Y. Direct detection by in situ PCR of the amoA gene in biofilm resulting from a nitrogen removal process. Appl Environ Microbiol, 2001, 67 (11): 5261~5266
27 Rotthauwe JH, Witzel KP, Liesack W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol, 1997, 63 (12): 4704~4712
28 Cole AC, Shanahan JW, Semmens MJ, LaPara TM. Preliminary studies on the microbial community structure of membrane-aerated biofilms treating municipal wastewater. Desalination, 2002, 146: 421~426
29 Luxmy BS, Nakajima F, Yamamoto K. Analysis of bacterial community in membrane-separation bioreactors by fluorescent in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Water Sci & Technol, 2000, 41 (10): 259~268
30 Ebie Y, Matsumura M, Noda N, Tsuneda S, Hirata A, Inamori Y. Community analysis of nitrifying bacteria in an advanced and compact Gappei-Johkasou by FISH and PCR-DGGE. Water Sci & Technol, 2002, 46 (11): 105~111
31 Limpiyakorn T, Shinohara Y, Kurisu F, Yagi O. Distribution of ammonia-oxidizing bacteria in sewage activated sludge: Analysis based on 16S rDNA sequence. Water Sci & Technol, 2004, 50 (8): 9~14
32 Mota C, Head MA, Ridenoure JA, Cheng JJ, Reyes FL III. Effects of aeration cycles on nitrifying bacterial populations and nitrogen removal in intermittently aerated reactors. Appl Environ Microbiol, 2005, 71 (12): 8565~8572
33 Sundberg C, Stendahlb JS, Tonderski K, Lindgren PE. Overland flow systems for treatment of landfill leachates—Potential nitrification and structure of the ammonia-oxidising bacterial community during a growing season. Soil Biol Biochem, 2007, 39 (1): 27~138
34 Wang XD (王晓丹), Li YH (李艳红). Advances in studying water microbial ecology by molecular biological techniques. Microbiology (微生物学通报), 2007, 34 (4): 777~781
35 Hiraishi A, Iwasaki W, Shinjo H. Terminal restriction pattern analysis of 16s rRNA genes for the characterization of bacterial communities of activated sludge. J Biosci & Bioengin, 2000, 90 (2): 148~156
36 Egli K, Langer C, Siegrist HR, Zehnder AJ, Wagner M, Meer JR. Community analysis of ammonia and nitrite oxidizers during start-up of nitritation reactors. Appl Environ Microbiol, 2003, 69 (6): 3213~3222
37 Park HD, Noguera DR. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res, 2004, 38 (14): 3275~3286
38 Park HD, ReganJM, Noguera DR. Molecular analysis of ammonia-oxidizing bacterial populations in aerated-anoxic Orbal processes. Water Sci & Technol, 2002, 46 (1): 273~280
39 Limpiyakorn T, Shinohara Y, Kurisu F, Yagi O. Communities of ammonia-oxidizing bacteria in activated sludge of various sewage treatment plants in Tokyo. FEMS Microbiol Ecol, 2005, 54 (2): 205~217
40 Nakamura Y, Satoh H, Kindaichi T, Okabe S. Community structure, abundance, and in situ activity of nitrifying bacteria in river sediments as determined by the combined use of molecular techniques and microelectrodes. Environ Sci Technol, 2006, 40 (5):1532~1539
41 Layton AC, Dionisi H, Kuo HW, Robinson KG, Garrett VM, Meyers A, Sayler GS. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl Environ Microbiol, 2005, 71 (2): 1105~1108
42 Dionisi HM, Harms G, Layton AC, Gregory IR, Parker J, Hawkins SA, Robinson KG, Sayler GS. Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction. Appl Environ Microbiol, 2003, 69 (11): 6597~6604
43 Harms G, Layton AC, Dionisi HM, Gregory IR,Garrett VM, Hawkins SA, Robinson KG, Sayler GS. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol, 2003, 37 (2): 343~351
44 Robinson KG, Dionisi HM, Harms G, Layton AC, Gregory IR, Sayler GS. Molecular assessment of ammonia- and nitrite-oxidizing bacteria in full-scale activated sludge wastewater treatment plants. Water Sci & Technol, 2003, 48 (8): 119~126
45 Okano Y, Hristova KR, Leutenegger CM , Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM. Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol, 2004, 70 (2): 1008~1016
46 Hall SJ, Keller J, Blackall LL. Microbial quantification in activated sludge: the hits and misses. Water Sci and Technol, 2003, 48 (3): 121~126
47 Terahara T, Hoshino T, Tsuneda S,Hirata A, Inamori Y. Monitoring the microbial population dynamics at the start-up stage of wastewater treatment reactor by terminal restriction fragment length polymorphism analysis based on 16S rDNA and rRNA gene sequences. J Biosci & Bioengin, 2004, 98 (6): 425~428
48 Aoi Y, Shiramasa Y, Tsuneda S, Hirata A, Kitayama A, Nagamune T. Real-time monitoring of ammonia-oxidizing activity in a nitrifying biofilm by amoA mRNA analysis. Water Sci & Technol , 2002, 46 (1): 439~442
49 Araki N, Yamaguchi T, Yamazak S, Harada H. Quantification of amoA gene abundance and their amoA mRNA levels in activated sludge by real-time PCR. Water Sci & Technol, 2004, 50 (8): 1~8
50 Friedrich MW. Stable-isotope probing of DNA: Insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotechnol, 2006, 17 (1): 59~66
51 Madsen EL. The use of stable isotope probing techniques in bioreactor and field studies on bioremediation. Curr Opin Biotechnol, 2006, 17 (1): 92~97
52 Ginige MP, Keller J, Blackall LL. Investigation of an acetate-fed denitrifying microbial community by stable isotope probing, full-cycle rRNA analysis, and fluorescent in situ hybridization-microautoradiography. Appl Environ Microbiol, 2005, 71 (12): 8683~8691
53 Ginige MP, Hugenholtz P, Daims H, Wagner M, Keller J, Blackall LL. Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization microautoradiography to study a methanol-fed denitrifying microbial community. Appl Environ Microbiol. 2004, 70 (1): 588~596

Memo

Memo:
-
Last Update: 2010-02-09