|Table of Contents|

Water purification efficiency and influence factors of constructed wetlands in Erhai Basin(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2021 05
Page:
1264-1273
Research Field:
Articles
Publishing date:

Info

Title:
Water purification efficiency and influence factors of constructed wetlands in Erhai Basin
Author(s):
GAO Xiaoyu1 2 YANG Tong3 SHAN Hang1 2 TANG Xin4 5 WANG Hao1 2 NI Leyi1 & CHOU Qingchuan1 2?
1 Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China2 University of Chinese Academy of Sciences, Beijing 100049, China3 Dali Erhai Administration, Dali 671000, China4 Beijing Enterprises Water (China) Investment Co., Ltd., Beijing 100049, China5 Beijing Beihua Qingchuang Environemtal Technology Co., Ltd., Beijing 100049, China
Keywords:
Erhai Basin constructed wetland purification efficiency wetland area water coverage aquatic plant
CLC:
-
PACS:
DOI:
10.19675/j.cnki.1006-687x.2020.06064
DocumentCode:

Abstract:
In recent years, constructed wetland ecosystems have received increasing attention globally and have been widely used in the treatment of point and non-point source pollution in the basin. To explore the operating status of the constructed wetlands in the Erhai Basin, we surveyed 34 constructed wetlands in the Erhai Basin from September to October 2019. We determined the wetland area (A), run time (T), water coverage (WC), vegetation coverage (VC), water circulation (Fvel, Fvol), water purification efficiency (the removal rates of total phosphorus (TP) and total nitrogen (TN), R(TP) and R(TN)), and dissolved oxygen (DO) at the inlet and outlet, among other factors. The wetlands were divided into two different types according to the differences in parameters such as R(TP), R(TN), WC, VC, and inflow-TP. The average Rm(TN) and Rm(TP) of the first type of constructed wetlands were 51.6% and 52.6%, respectively, indicating that this type of wetland had an obvious purification effect. The R(TN) was significantly negatively correlated with A and T, and positively correlated with the concentrations of N and P in the inflow water. Floating plants and submerged plants had clear advantages in removing N and P compared to emergent plants. The average Rm(TN) and Rm(TP) in the second type of constructed wetlands were ?4.9% and ?11.8%, respectively, which indicates that the N and P removal capability of wetlands had degraded, and that this type of wetland had no obvious purification effect. In summary, the constructed wetlands have high N and P removal capabilities with sufficient water cover, and are dominated by floating and submerged plant communities. As small and medium wetlands (0.10-0.50 km2) are easier to manage during operation, their N and P removal capacities are stronger than larger wetlands (> 0.50 km2). These results can provide a theoretical basis for the unified construction and scientific management of constructed wetlands at the watershed scale.

References

1 Vymazal J. Constructed wetlands for wastewater treatment: five decades of experience [J]. Environ Sci Technol, 2011, 45 (1): 61-69
2 靖元孝, 陈兆平, 杨丹菁. 风车草对生活污水的净化效果及其在人工湿地的应用[J]. 应用与环境生物学报, 2002, 8 (6): 614-617 [Jing XY, Chen ZP, Yang DJ. Purifying efficiency of Cyperus alternifolius to domestic sewage and its application in constructed wetland [J]. Chin J Appl Environ Biol, 2002, 8 (6): 614-617]
3 Hammer DA, Bastian RX. Wetlands ecosystems: natural water purifiers [A]//Hammer DA. Constructed Wetlands for Wastewater Treatment: Municipal, Industrial, and Agricultural. Chelsea: Lewis Publishers, 1989: 5-19
4 Zhuang LL, Yang T, Zhang J, Li XZ. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review [J]. Bioresour Technol, 2019, 293: 10
5 Wood A. Constructed wetlands in water pollution control: fundamentals to their understanding [J]. Wat Sci Technol, 1995, 32 (3): 21-29
6 Guidelines for using free water surface constructed wetlands to treat municipal sewage [M]. Brisbane: Department of Natural Resources, 2000: 141
7 张军, 周琪, 何蓉. 表面流人工湿地中氮磷的去除机理[J]. 生态环境, 2004 (1): 98-101 [Zhang J, Zhou Q, He R. Mechanism of nitrogen and phosphorus removal in free-water surface constructed wetland [J]. Ecol Environ Sci, 2004 (1): 98-101]
8 Brix H. Functions of macrophytes in constructed wetlands [J]. Water Sci Technol, 1994, 29 (4): 71-78
9 Kadlec RH, Knight RL, Vymazal J, Brix H, Cooper PF, Haberl R. Constructed wetlands for water pollution control: processes, performance, design and operation [R]. London: International Water Association, 2000
10 Gagnon V, Chazarenc F, Koiv M, Brisson J. Effect of plant species on water quality at the outlet of a sludge treatment wetland [J]. Water Res, 2012, 46 (16): 5305-5315
11 Dzakpasu M, Scholz M, McCarthy V, Jordan S. Nitrogen transformations and mass balance in an integrated constructed wetland treating domestic wastewater [J]. Water Sci Technol, 2014, 70 (9): 1496-1502
12 韦菊阳, 陈章和. 梭鱼草和芦苇人工湿地对重金属和营养的去除率比较[J]. 应用与环境生物学报, 2013, 19 (1): 179-183 [Wei JY, Chen ZH. Removal of heavy metal elements and nutrients by Pontederia cordata and Phragmites australis constructed wetlands [J]. Chin J Appl Environ Biol, 2013, 19 (1): 179-183]
13 成水平, 吴振斌, 况琪军. 人工湿地植物研究[J]. 湖泊科学, 2002 (2): 179-184 [Chen SP, Wu ZB, Kuang QJ. Macrophytes in artificial wetland [J]. J Lake Sci, 2002 (2): 179-184]
14 Vymazal J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment [J]. Ecol Eng, 2005, 25 (5): 478-490
15 Huett DO, Morris SG, Smith G, Hunt N. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands [J]. Water Res, 2005, 39 (14): 3259-3272
16 梁启斌, 侯磊, 李能发, 陈鑫, 王克勤. 洱海北部表流人工湿地氮截留的长效性及影响因子[J]. 农业环境科学学报, 2020: 1-13 [Liang QB, Hou L, Li NF, Chen Q, Wang KQ. Long-term effects and influencing factors of nitrogen retention in a surface flow constructed wetland in the northern part of Erhai Lake [J]. J Agr-Environ Sci, 2020: 1-13]
17 李丹, 黄民生, 郑丙辉, 储昭升. 洱海调蓄多塘湿地磷截留效果及影响因子研究[J]. 华东师范大学学报(自然科学版), 2018 (6): 50-58 [Li D, Huang MS, Zhen BH, Cu ZS. Performance and factors of phosphorus interception in storing multi-pond wetlands in the Erhai Lake Basin [J]. J East China Norm Univ (Nat Sci), 2018 (6): 50-58]
18 刘曦, 赵亚芳, 张小玲, 孔海南, 林燕. 2012年洱海地区邓北桥人工湿地和永安江生态护岸植物群落多样性[J]. 湿地科学, 2018, 16 (1): 45-50 [Liu X, Zhao YF, Zhang XL, Kong HN, Lin Y. Plant community diversity in dengbeiqiao constructed wetland and ecological revetment of yonganjiang river in Erhai Region in 2012 [J]. Wetl Sci, 2018, 16 (1): 45-50]
19 Chen SQ, Chu ZS, Zhou YQ, Li QF, Wang TY. Screening optimal substrates from Erhai lakeside for Ottelia acuminata (Gagnep.) Dandy, an endangered submerged macrophyte in China [J]. Environ Sci Pollut Res, 2018, 25 (20): 19887-19897
20 Li D, Zheng BH, Chu ZS, Liu Y, Huang MS. Seasonal variations of performance and operation in field-scale storing multipond constructed wetlands for nonpoint source pollution mitigation in a plateau lake basin [J]. Bioresour Technol, 2019, 280: 295-302
21 Li D, Ye BB, Hou ZY, Chu ZS, Zheng BH. Long-term performance and microbial distribution of a filed-scale storing multi-pond constructed wetland with Ottelia acuminata for the treatment of non-point source pollution [J]. J Clean Prod, 2020, 262: 9
22 韩涛, 彭文启, 李怀恩, 毛战坡. 洱海水体富营养化的演变及其研究进展[J]. 中国水利水电科学研究院学报, 2005, 3 (1): 71-73 [Han T, Peng WQ, Li HE, Mao ZP. Evolution of eutrophication in the Erhai Lake and its relevant research progress [J]. J China Inst Water Resour Hydrop Res, 2005, 3 (1): 71-73]
23 董全亮, 崔慧广, 汪燕. 洱海保护中的“公民参与”问题研究[J]. 安徽农业科学, 2012, 40 (22): 11392-11394 [Dong QL, Cui HG, Wang Y. Research on problem of “public participation” in Erhai protection [J]. J Anhui Agric Sci, 2012, 40 (22): 11392-11394]
24 卫志宏, 唐雄飞, 杨振祥, 吕兴菊, 孟良, 朱江, 窦嘉顺, 杨四坤. 洱海主要污染物允许排放总量的控制分配[J]. 湖泊科学, 2013, 25 (5): 665-673 [Wei ZH, Tang XF, Yang ZX, Lv XJ, Meng L, Zhu J, Dou JS, Yang SK. Allocation of major pollutants loads for Lake Erhai [J]. J Lake Sci, 2013, 25 (5): 665-673]
25 蔡志洲, 小微型无人机应用-环境保护和水土保护[M]. 北京: 高等教育出版社, 2017 [Cai ZZ. Small and Micro UAV Applications-Environmental Protection and Soil and Water Protection [M]. Beijing: Higher Education Press, 2017]
26 国家环境保护总局水和废水监测分析方法编委会. 水和废水监测分析方法[M]. 第4版. 北京: 中国环境科学出版社, 2002 [Editorial Committee of Water and Wastewater Monitoring and Analysis Methods of the State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods [M]. Beijing: China Environmental Science Press, 2002]
27 Van De Moortel AMK, Meers E, De Pauw N, Tack FMG. Effects of vegetation, season and temperature on the removal of pollutants in experimental floating treatment wetlands [J]. Water Air Soil Pollut, 2010, 212 (1-4): 281-297
28 Liu T, Xu SR, Lu SY, Qin P, Bi B, Ding HD, Liu Y, Guo XC, Liu, XH. A review on removal of organophosphorus pesticides in constructed wetland: performance, mechanism and influencing factors [J]. Sci Total Environ, 2019, 651: 2247-2268
29 沈莹, 郑于聪, 王晓昌, 贾策, 赵梦云. 不同尺度潜流人工湿地对污染河水的净化机制[J]. 环境工程学报, 2018, 12 (6): 1667-1675 [Shen Y, Zhen YC, Wang XC, Jia C, Zhao MY. Mechanism of different scales subsurface flow constructed wetlands for purifying polluted river water [J]. Chin J Environ Eng, 2018, 12 (6): 1667-1675]
30 夏汉平. 人工湿地处理污水的机理与效率[J]. 生态学杂志, 2002, 21 (4): 51-59 [Xia HP. Mechanisms and efficiencies on wastewater treatment with constructed wetlands: a review [J]. Chin J Ecol, 2002, 21 (4): 51-59]
31 崔宝山, 杨志峰. 湿地生态环境需水量研究[J]. 环境科学学报, 2002, 22 (2): 219-224 [Cui BS, Yang ZF. Water consumption for eco-environmental aspect on wetlands [J]. Acta Sci Circ, 2002, 22 (2): 219-224]
32 Gale PM, Reddy KR, Graetz DA. Phosphorus retention by wetland soils used for treated waste-water disposal [J]. J Environ Qual, 1994, 23 (2): 370-377
33 Vymazal J, Brix H, Cooper PF, Haberl R, Perfler R, Laber J. Removal Mechanisms and Types of Constructed Wetlands [M]. Leiden: Backhuys Publishers, 1998
34 姚鑫, 杨桂山, 万荣荣, 王晓龙. 水位变化对河流、湖泊湿地植被的影响[J]. 湖泊科学, 2014, 26 (6): 813-821 [Yao X, Yang GS, Wan RR, Wang XL. Impact of water level change on wetland vegetation of rivers and lakes [J]. J Lake Sci, 2014, 26 (6): 813-821]
35 Stottmeister U, Wiessner A, Kuschk P, Kappelmeyer U, Kastner M, Bederski O, Muller RA, Moormann H. Effects of plants and microorganisms in constructed wetlands for wastewater treatment [J]. Biotechnol Adv, 2003, 22 (1-2): 93-117
36 Bachand PAM, Horne AJ. Denitrification in constructed free-water surface wetlands: II. Effects of vegetation and temperature [J]. Ecol Eng, 2000, 14 (1-2): 17-32
37 Fraser LH, Carty SM, Steer D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms [J]. Bioresour Technol, 2004, 94 (2): 185-192
38 Bastviken SK, Eriksson PG, Premrov A, Tonderski K. Potential denitrification in wetland sediments with different plant species detritus [J]. Ecol Eng, 2005, 25 (2): 183-190
39 Calheiros CSC, Rangel A, Castro PML. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater [J]. Water Res, 2007, 41 (8): 1790-1798
40 Li H, Ye ZH, Wei ZJ, Wong MH. Root porosity and radial oxygen loss related to arsenic tolerance and uptake in wetland plants [J]. Environ Poll, 2011, 159 (1): 30-37
41 Verhofstad M, Poelen MDM, Van Kempen MML, Bakker ES, Smolders AJP. Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants [J]. Ecol Eng, 2017, 106: 423-430
42 Tang Y, Harpenslager SF, Van Kempen MML, Verbaarschot EJH, Loeffen LMJM, Roelofs JGM, Smolders AJP, Lamers LPM. Aquatic macrophytes can be used for wastewater polishingbut not for purification in constructed wetlands [J]. Biogeoscience, 2017, 14: 755-766
43 Osti JAS, Henares MNP, Camargo AFM. The efficiency of free-floating and emergent aquatic macrophytes in constructed wetlands for the treatment of a fishpond effluent [J]. Aquacult Res, 2018, 49 (10): 3468-3476
44 王萌, 王玉彬, 陈章和. 芦苇的种质资源及在人工湿地中的应用[J]. 应用与环境生物学报, 2010, 16 (4): 590-595 [Wang M, Wang YB, Chen ZH. Germplasm resource of phragmites adans and its application in constructed wetlands [J]. Chin J Appl Environ Biol, 2010, 16 (4): 590-595]
45 王雁, 黄佳聪, 闫人华, 高俊峰. 湖泊湿地的水质净化效应—以太湖三山湿地为例[J]. 湖泊科学, 2016, 28 (1): 124-131 [Wang Y, Huang JC, Yan RH, Gao JF. Nutrient removal efficiency of lake wetlands: a case study of Sanshan Wetland in Lake Taihu, eastern China [J]. J Lake Sci, 2016, 28 (1): 124-131]
46 Breen PF. A mass balance method for assessing the potential of artificial wetlands for wastewater treatment [J]. Water Res, 1990, 24: 689-697
47 Hosoi Y, Kido Y, Miki M, Sumida M. Field examination on reed growth, harvest and regeneration for nutrient removal [J]. Water Sci Technol, 1998, 38 (1): 351-359
48 Kiedrzynska E, Wagner I, Zalewski M. Quantification of phosphorus retention efficiency by floodplain vegetation and a management strategy for a eutrophic reservoir restoration [J]. Ecol Eng, 2008, 33 (1): 15-25
49 Zheng YC, Wang XCC, Ge Y, Dzakpasu M, Zhao YQ, Xiong JQ. Effects of annual harvesting on plants growth and nutrients removal in surface-flow constructed wetlands in northwestern China [J]. Ecol Eng, 2015 (83): 268-275
50 陈晓希,白晓华. 洱海湿地植物不同组合配置对氮磷的去除效果研究[J]. 环境科学导刊, 2017, 36 (3): 46-52 [Chen XX, Bai XH. Removal effects on nitrogen and phosphorus on wetland plant assemblages in Erhai Lake [J]. Environ Sci Surv, 2017, 36 (3): 46-52]
51 Zhang ZH, Rengel Z, Meney K. Nutrient removal from simulated wastewater using Canna indica and Schoenoplectus validus in mono- and mixed-culture in wetland microcosms [J]. Water Air Soil Pollut, 2007 (183): 95-105
52 李猛, 马旭洲, 王武. 大薸对水体氮磷去除效果的初步研究[J]. 长江流域资源与环境, 2012, 21 (9): 1137-1142 [Li M, Ma XZ, Wang W. Effects of Pistia stratioltes L. on removal rate for nitrogen rate and phosphorus in polluted water bod [J]. Resour Environ Yangtze Basin, 2012, 21 (9): 1137-1142]
53 周玥, 韩玉国, 张梦, 李冬杰, 王成志, 赵芸, 林鹏, 杨林林. 4种不同生活型湿地植物对富营养化水体的净化效果[J]. 应用生态学报, 2016, 27 (10): 3353-3360 [Zhou Y, Han YG, Zhang M, Li DJ, Wang CZ, Zhao Y, Lin P, Yang LL. Purification efficiency of four different ecotypes of wetland plants on eutrophic water body [J]. Chin J Appl Ecol, 2016, 27 (10): 3353-3360]

Memo

Memo:
-
Last Update: 2021-10-25