|Table of Contents|

Advances in the mechanism of heavy metal resistance and combined remediation of plants and microorganisms(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2021 05
Research Field:
Publishing date:


Advances in the mechanism of heavy metal resistance and combined remediation of plants and microorganisms
LI Ting1 2 WU Minghui3 YANG Xinting1 2 YANG Huaju12 WANG Yue12 & DUAN Changqun1 2?
1 School of Ecology and Environmental Science, Yunnan University, Kunming 650000, China 2 Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Kunming 650000, China 3 University of Chinese Academy of Sciences, Beijing 100049, China
heavy metal pollution resistance gene gene mining horizontal gene transfer compound plant-microorganism remediation

A series of resistance systems against heavy metals has evolved in many organisms because of the extensive pollution of heavy metals by anthropogenic disturbance, which may have applications for the remediation of heavy metal contamination. Compared with traditional and physicochemical remediation, plant and microbial remediations are more suitable for ecological remediation as they are more environmentally friendly and less expensive. We reviewed the gene resources and molecular mechanisms of heavy metal resistance in plants and microorganisms, and summarized the technology and application of plant-microorganism remediation. The resistance process of heavy metals within plants and microorganisms is encoded by multiple genes. The in-situ plants and microorganisms in polluted areas present greater environmental adaptability and higher applicable potential, and are ideal materials for developing resistance resources. Genomics has become an excellent tool for mining resistant gene resources. It is promising to find that horizontal gene transfer and gene editing technology enriches the heavy metal resistant resources, and also increases the expression of resistance. Moreover, higher repair feasibility and efficiency can be possibly achieved by plant-microorganism combined systems. Microorganisms enhance the remediation capacity of plants by promoting growth, secreting acidic substances to dissolve heavy metals, and amplifying the genetic expression of heavy metal transport, chelation, antioxidants, and other resistance processes in plants. However, the mechanism of endophyte-assisted phytoremediation remains unclear. To date, composite microbial agents, such as multiple plant growth-promoting rhizobacteria, bacterial-fungal combinations, and rhizosphere microorganism-endophyte combinations, are commonly used, but their application is affected by the inoculation methods and application conditions. In general, diverse and complex pollution environments require the development of cross-species and multi-gene editing techniques, and future remediation should focus on the resistance mechanism of compound plant-microorganism synergistic remediation.


1 Oves M, Khan MS, Zaidi A, Ahmad E. Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview [M]//Zaidi A, Wani P, Khan M. Toxicity of Heavy Metals to Legumes and Bioremediation. Vienna: Springer, 2012: 1-27
2 Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence [J]. FEMS Microbiol Rev, 2018, 42 (1): 1-21
3 Thapa G, Sadhukhan A, Panda SK, Sahoo L. Molecular mechanistic model of plant heavy metal tolerance [J]. Biometals, 2012, 25 (3): 489-505
4 罗艳, 李裕冬, 罗晓波, 王琼瑶, 姚民. 重金属镉对4种林木种子萌发及幼苗生长的影响[J]. 四川林业科技, 2018, 181 (2): 11-16 [Luo Y, Li YD, Luo XB, Wang QY, Yao M. Effects of heavy metal cadmium (Cd) stress on seed germination and seedling growth of 4 species of forest trees [J]. J Sichuan Agric Sci Technol, 2018, 181 (2): 11-16]
5 段昌群. 环境生物学[M]. 北京: 高等教育出版社, 2010 [Duan CQ. Environmental Biology [M]. Beijing: Higher Education Press, 2010]
6 Khalid S, Shahid M, Niazi NK, Murtaza B, Bibi I, Dumat C. A comparison of technologies for remediation of heavy metal contaminated soils [J]. J Geochem Explor, 2017, 182: 247-268
7 李婷, 吴明辉, 王越, 杨化菊, 唐春东, 段昌群. 人类扰动对重金属元素的生物地球化学过程的影响与修复研究进展[J]. 生态学报, 2020, 40 (13): 4679-4688 [Li T, Wu MH, Wang Y, Yang HJ, Tang CD, Duan CQ. Advances in research on the effects of human disturbance on biogeochemical processes of heavy metals and remediation [J]. Acta Ecol Sin, 2020, 40 (13): 4679-4688]
8 Saxena G, Kishor R, Saratale GD, Bharagava RN. Genetically modified organisms (GMOs) and their potential in environmental management: constraints, prospects, and challenges [M]//Bharagava R, Saxena G. Bioremediation of Industrial Waste for Environmental Safety. Singapore: Springer, 2020: 1-19
9 Kidd PS, Alvarez-Lopez V, Becerra-Castro C, Cabello-Conejo M, Prieto-Fernandez A. Potential role of plant-associated bacteria in plant metal uptake and implications in phytotechnologies [M]//Cuypers A, Vangronsveld J. Advances in Botanical Research. Cambridge: Academic Press, 2017: 87-126
10 Roychowdhury A, Datta R, Sarkar D. Heavy Metal Pollution and Remediation [M]//Béla T, Timothy D. Green Chemistry. Boston: Elsevier, 2018: 359-373
11 Chandan P, Johan BP, Christopher R, Erik K, Larsson DGJ. BacMet: antibacterial biocide and metal resistance genes database [J]. Nucleic Acids Res, 2014, 42 (D1): 737-743
12 Sharma P, Kumar A, Bhardwaj R. Plant steroidal hormone epibrassinolide regulate – Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression [J]. Environ Exp Bot, 2016, 122: 1-9
13 Singh R, Jha AB, Misra AN, Sharma P. Adaption Mechanisms in Plants Under Heavy Metal Stress Conditions During Phytoremediation [M]//Pandey VC, Bauddh K. Phytomanagement of Polluted Sites. Elsevier, 2019: 329-360
14 Chen YT, Wang Y, Yeh KC. Role of root exudates in metal acquisition and tolerance [J]. Curr Opin Plant Biol, 2017, 39: 66-72
15 Li X, Zhu YG, Shaban B, Bruxner TJ, Bond PL, Huang L. Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes [J]. Sci Rep, 2015, 5: 13258
16 Srivastava RK, Pandey P, Rajpoot R, Rani A, Gautam A, Dubey RS. Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings [J]. Protoplasma, 2015, 252 (4): 959-975
17 Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM. Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives [J]. Environ Monit Assess, 2016, 188 (4): 206
18 Nies DH. Efflux-mediated heavy metal resistance in prokaryotes [J]. FEMS Microbiol Rev, 2003, 27 (2-3): 313-339
19 Yesilirmak F, G?k?e ZNO, Metin B, Sayers Z. Functional analysis of Triticum durum type 1 metallothionein gene (dMT) in response to varying levels of cadmium [J]. Indian J Plant Physiol, 2017, 23 (8): 1-8
20 Yadav SK. Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants [J]. S Afr J Bot, 2010, 76 (2): 167-179
21 Luo JS, Gu T, Yang Y, Zhang Z. A non-secreted plant defensin AtPDF2.6 conferred cadmium tolerance via its chelation in Arabidopsis [J]. Plant Mol Biol, 2019, 100 (4): 561-569
22 Kr?mer U, Talke IN, Hanikenne M. Transition metal transport [J]. FEBS Lett, 2007, 581 (12): 2263-2272
23 Kim YH, Khan AL, Kim DH, Lee SY, Kim KM, Waqas M, Jung HY, Shin JH, Kim JG, Lee IJ. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones [J]. BMC Plant Biol, 2014, 14 (1): 13
24 Wang Y, Wang C, Liu YJ, Yu KF, Zhou YH. GmHMA3 sequesters Cd to the root endoplasmic reticulum to limit translocation to the stems in soybean [J]. Plant Sci, 2018, 270: 23
25 Dominguez-Solís JR, Gutierrez-Alcalá G, Vega JM, Romero LC, Gotor C. The cytosolic O-acetylserine(thiol)lyase gene is regulated by heavy metals and can function in cadmium tolerance [J]. J Biol Chem, 2001, 276 (12): 9297-9302
26 Jiang L, Chen ZP, Gao QC, Ci LK, Cao SQ, Han Y, Wang WC. Loss‐of‐function mutations in the APX1 gene result in enhanced selenium tolerance in Arabidopsis thaliana [J]. Plant Cell Environ, 2016, 39 (10): 2133-2144
27 Emily I, Gunnam N, Danielle E, Salt DE, Jo Ann B. A vacuolar arsenite transporter necessary for arsenic tolerance in the arsenic hyperaccumulating fern Pteris vittata is missing in flowering plants [J]. Plant Cell, 2010, 22 (6): 2045
28 Khoudi H, Maatar Y, Gouiaa S, Masmoudi K. Transgenic tobacco plants expressing ectopically wheat H+-pyrophosphatase (H+ -PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium [J]. J Plant Physiol, 2012, 169 (1): 98-103
29 Sharma SS, Dietz KJ, Mimura T. Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants [J]. Plant Cell Environ, 2016, 39 (5): 1112-1126
30 Guo HP, Chen HM, Hong CT, Jiang D, Zheng BS. Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation [J]. Ecotoxicol Environ Saf, 2017, 141: 119-128
31 Mihdir A, Assaeedi AS, Abulreesh HH, Osman GE. Detection of heavy metal resistance genes in an environmental Pseudomonas aeruginosa isolate [J]. Br Microbiol Res J, 2016, 17 (1): 1-9
32 Nesler A, Dalcorso G, Fasani E, Manara A, Di Sansebastiano GP, Argese E, Furini A. Functional components of the bacterial CzcCBA efflux system reduce cadmium uptake and accumulation in transgenic tobacco plants [J]. New Biotechnol, 2017, 35: 54-61
33 Van Der Lelie D, Springael D, R?mling U, Ahmed N, Mergeay M. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa [J]. Gene, 1999, 238 (2): 417-425
34 Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, Van Der Lelie D, Wattiez R. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes [J]. FEMS Microbiol Rev, 2003, 27 (2-3): 385-410
35 Silver S, Phung lT. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions [J]. J Ind Microbiol Biotechnol, 2005, 32 (11-12): 587-605
36 Sylvia F, Gregor G, Christopher R, Nies DH. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli [J]. J Bacteriol, 2003, 185 (13): 3804
37 Grass G, B, Rosen BP, Lemke K, Schlegel HG, Rensing C. NreB from Achromobacter xylosoxidans 31A Is a nickel-induced transporter conferring nickel resistance [J]. J Bacteriol, 2001, 183 (9): 2803-2807
38 Ruepp A, Graml W, Santos-Martinez ML, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W. The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum [J]. Nature, 2000, 407 (6803): 508-513
39 Mark D, Craig BA, P Ram K, Bond PL. Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms [J]. Microbiology, 2003, 149 (8): 1959-1970
40 Nucifora G, Chu L, Misra TK, Silver S. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase [J]. PNAS, 1989, 86 (10): 3544-3548
41 Dai XT, Zhou DS, Xiong W, Feng J, Luo WB, Luo GM, Wang HJ, Sun FJ, Zhou XD. The IncP-6 plasmid p10265-KPC from Pseudomonas aeruginosa carries a novel ΔISEc33-associated blaKPC-2 gene cluster [J]. Front Microbiol, 2016, 7: 310
42 Choudhary S, Sar P. Real-time PCR based analysis of metal resistance genes in metal resistant Pseudomonas aeruginosa strain J007 [J]. J Basic Microbiol, 2015, 56 (7): 688-697
43 Fogel S, Welch JW. Tandem gene amplification mediates copper resistance in yeast [J]. PNAS, 1982, 79 (17): 5342-5346
44 Antsotegiuskola M, Markinai?arrairaegui A, Ugalde U. Copper resistance in Aspergillus nidulans relies on the PI-type ATPase CrpA, regulated by the transcription factor AceA [J]. Front Microbiol, 2017, 8: 912
45 Macdiarmid CW, Milanick MA, Eide DJ. Biochemical properties of vacuolar zinc transport systems of Saccharomyces cerevisiae [J]. J Biol Chem, 2002, 277 (42): 39187-39194
46 Xu W, Jia HY, Zhang LM, Wang HY, Tang H, Zhang LP. Effects of GSH1 and GSH2 gene mutation on glutathione synthetases activity of Saccharomyces cerevisiae [J]. Protein J, 2017, 36 (4): 270-277
47 Dalcorso G, Fasani E, Manara A, Visioli G, Furini A. Heavy metal pollutions: state of the art and innovation in phytoremediation [J]. Int J Mol Sci, 2019, 20 (14): 3412
48 Benizri E, Kidd PS. The role of the rhizosphere and microbes associated with hyperaccumulator plants in metal accumulation [M]//Van der Ent A, Echevarria G, Baker A, Morel J. Agromining: Farming for Metals. Mineral Resource Reviews. Cham: Springer International Publishing AG, 2018: 157-188
49 Cai XC, Zheng X, Zhang DN, Iqbal W, Liu CK, Yang B, Zhao X, Lu XY, Mao YP. Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant [J]. Ecotoxicol Environ Saf, 2019, 181: 472-480
50 Karmakar R, Bindiya S, Hariprasad P. Convergent evolution in bacteria from multiple origins under antibiotic and heavy metal stress, and endophytic conditions of host plant [J]. Sci Total Environ, 2019, 650: 858-867
51 Bock R. The give-and-take of DNA: horizontal gene transfer in plants [J]. Trends Plant Sci, 2010, 15 (1): 11-22
52 Tiwari P, Bae H. Horizontal gene transfer and endophytes: an implication for the acquisition of novel traits [J]. Plants, 2020, 9 (3): 305
53 Gu Y, Wang Y, Sun Y, Zhao K, Xiang Q, Yu X, Zhang X, Chen Q. Genetic diversity and characterization of arsenic-resistant endophytic bacteria isolated from Pteris vittata, an arsenic hyperaccumulator [J]. BMC Microbiol, 2018, 18 (1): 42
54 Lu XM, Lu PZ. Distribution of antibiotic resistance genes in soil amended using Azolla imbricata and its driving mechanisms [J]. Sci Total Environ, 2019, 692: 422-431
55 Nouri J, Mehregan I, Benis S. Phytoremediation of soils contaminated with heavy metals resulting from acidic sludge of eshtehard industrial town using native pasture plants [J]. J Environ Earth Sci, 2015, 5 (2): 87-93
56 Nahar N, Rahman A, Nawani N, Ghosh S, Mandal A. Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana [J]. J Plant Physiol, 2017, 218: 121-126
57 Guo JG, Xu WZ, Ma M. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana [J]. J Hazard Mater, 2012, 199 (51): 309-313
58 Barkay T, Tripp SC, Olson BH. Effect of metal-rich sewage sludge application on the bacterial communities of grasslands [J]. Appl Environ Microbiol, 1985, 49 (2): 333-337
59 Abou-Shanab RAI, Berkum PV, Angle JS. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale [J]. Chemosphere, 2007, 68 (2): 360-367
60 Rai PK, Kim KH, Lee SS, Lee JH. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes [J]. Sci Total Environ, 2020, 705: 135858
61 Guo X, Cui X, Li H. Effects of fillers combined with biosorbents on nutrient and heavy metal removal from biogas slurry in constructed wetlands [J]. Sci Total Environ, 2020, 703: 134788
62 Li XX, Wang XL, Chen YD, Yang XY, Cui ZJ. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment [J]. Ecotox Environ Safe, 2019, 168: 1-8
63 Kazemalilou S, Delangiz N, Asgari Lajayer B, Ghorbanpour M. Chapter 9 - Insight into plant-bacteria-fungi interactions to improve plant performance via remediation of heavy metals: an overview [M]// Sharma V, Salwan R, Al-Ani LKT. Molecular Aspects of Plant Beneficial Microbes in Agriculture. Cambridge: Academic Press. 2020: 123-132
64 Lu Q, Weng YN, You Y, Xu QR, Li HY, Li Y, Liu HJ, Du ST. Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil [J]. Environ Pollut, 2020, 257: 113497
65 Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: Mechanisms and future prospects [J]. Ecotoxicol Environ Saf, 2017, 147: 175
66 Ullah A, Sun H, Munis MFH, Fahad S, Yang XY. Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review [J]. Environ Exp Bot, 2015, 117: 28-40
67 Románponce B, Rezavázquez DM, Gutiérrezparedes S, Harocruz MDJUD, Maldonadohernández J, Bahenaosorio Y, Santos PEL, Wang ET, Vásquezmurrieta MS. Plant growth-promoting traits in rhizobacteria of heavy metal-resistant plants and their effects on Brassica nigra seed germination [J]. Pedosphere, 2017, 27 (3): 511-526
68 Sobariu DL, Fertu DIT, Diaconu M, Pavel LV, Hlihor RM, Dr?goi EN, Curteanu S, Lenz M, Corvini FX, Gavrilescu M. Rhizobacteria and plant symbiosis in heavy metal uptake and its implications for soil bioremediation [J]. New Biotechnol, 2016, 39 (Pt A): 125
69 Moreira H, Pereira SIA, Marques APGC, Rangel AOSS, Castro PML. Selection of metal resistant plant growth promoting rhizobacteria for the growth and metal accumulation of energy maize in a mine soil — Effect of the inoculum size [J]. Geoderma, 2016, 278: 1-11
70 Luo SL, Wan Y, Xiao X, Guo HJ, Chen L, Qiang X, Zeng GM, Liu CB, Chen JL. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation [J]. Appl Microbiol Biotechnol, 2011, 89 (5): 1637-1644
71 Zaets I, Kozyrovska N. Heavy metal resistance in plants: a putative role of endophytic bacteria [M]//Zaidi A, Wani P, Khan M. Toxicity of Heavy Metals to Legumes and Bioremediation. Vienna: Springer, 2012: 203-217
72 张玮川, 李剑, 王志宇, 杨航, 刘庆辉, 李艳, 严文浩. 内生菌-植物联合修复污染土壤研究进展[J]. 农业资源与环境学报, 2020, 38 (3): 1-17 [Zhang WC, Li J, Wang ZY, Yang H, Liu QH, Li Y, Yan WH. Research progress on remediation of pollutants in soil by endophytes combine with plants [J]. J Agric Resour Environ, 2020, 38 (3): 1-17]
73 Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID. Endophytic Cultivable bacteria of the metal bioaccumulatorspartina maritimaimprove plant growth but not metal uptake in polluted marshes soils [J]. Front Microbiol, 2015, 6 (638): 1450
74 Cicatelli A, Ferrol N, Rozpadek P, Castiglione S. Editorial: effects of plant-microbiome interactions on phyto- and bio-remediation capacity [J]. Front Plant Sci, 2019, 10 (533): 1-3
75 Gu LJ, Zhao ML, Ge M, Zhu SW, Cheng BJ, Li XY. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi [J]. Ecotoxicol Environ Saf, 2019, 186: 109744
76 Wu YJ, Ma LY, Liu QZ, Vesterg?rd M, Topalovic O, Wang Q, Zhou QY, Huang LK, Yang XE, Feng Y. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii [J]. J Hazard Mater, 2020, 395: 122661
77 Domka A, Rozp?dek P, Wa?ny R, Turnau K. Mucor sp.—An endophyte of Brassicaceae capable of surviving in toxic metal-rich sites [J]. J Basic Microbiol, 2019, 59 (1): 24-37
78 Golubov A, Byeon B, Woycicki R, Inglis GD, Kovalchuk I. Transcriptome of Arabidopsis thaliana plants treated with the human pathogen Campylobacter jejuni [J]. Biocatal Agric Biotechnol, 2017, 11: 259-267
79 Paulose B, Chhikara S, Coomey J, Jung H, Vatamaniuk O, Dhankher OP. A γ-glutamyl cyclotransferase protects Arabidopsis plants from heavy metal toxicity by recycling glutamate to maintain glutathione homeostasis [J]. Plant Cell, 2013, 25 (11): 4580-4595
80 Ghnaya T, Mnassri M, Ghabriche R, Wali M, Poschenrieder C, Lutts S, Abdelly C. Nodulation by Sinorhizobium meliloti originated from a mining soil alleviates Cd toxicity and increases Cd-phytoextraction in Medicago sativa L [J]. Front Plant Sci, 2015, 6: 863
81 Wu ZJ, Kong ZY, Lu SN, Huang C, Huang SY, He YH, Wu L. Isolation, characterization and the effect of indigenous heavy metal-resistant plant growth-promoting bacteria on sorghum grown in acid mine drainage polluted soils [J]. J Gen Appl Microbiol, 2019, 65 (5): 254-264
82 Wu YJ, Ma LY, Liu QZ, Sikder MM, Vesterg?rd M, Zhou KY, Wang Q, Yang XE, Feng Y. Pseudomonas fluorescens promote photosynthesis, carbon fixation and cadmium phytoremediation of hyperaccumulator Sedum alfredii [J]. Sci Total Environ, 2020, 726: 138554
83 Abou-Aly HE, Youssef AM, El-Meihy RM, Tawfik TA, El-Akshar EA. Evaluation of heavy metals tolerant bacterial strains as antioxidant agents and plant growth promoters [J]. Biocatal Agric Biotechnol, 2019, 19: 101110
84 Yang Q, Zhao ZQ, Hou H, Bai ZK, Yuan Y, Su ZJ, Wang GY. The effect of combined ecological remediation (plant microorganism modifier) on rare earth mine wasteland [J]. Environ Sci Pollut R, 2020, 27 (10): 1-13
85 Raklami A, Tahiri AI, Bechtaoui N, Abdelhay EG, Pajuelo E, Baslam M, Meddich A, Oufdou K. Restoring the plant productivity of heavy metal-contaminated soil using phosphate sludge, marble waste, and beneficial microorganisms [J]. J Environ Sci, 2021, 99: 210-221
86 Rajendran S, Sundaram L. Degradation of heavy metal contaminated soil using plant growth promoting rhizobacteria (PGPR): assess their remediation potential and growth influence of Vigna radiata. L [J]. J Agric Technol, 2020, 16 (2): 365-376
87 李秀玲, 韦岩松, 辛磊, 高宇星, 韦诗琪, 覃拥灵. 尾矿区砷污染土壤的植物、微生物协同修复[J]. 湿法冶金, 2019, 38 (1): 64-68 [Li XL, Wei YS, Xin L, Gao YX, Wei SQ, Tan YL. Synergistic Remediation of arsenic-contaminated soil in tailing area by plant-microorganism [J]. Shifa Yejin, 2019, 38 (1): 64-68]
88 Yu G, Ma JC, Jiang PP, Li JY, Gao JY, Qiao SX, Zhao ZY. The mechanism of plant resistance to heavy metal [C]. International Conference on Energy and Sustainable Environment, Nigeria, 2019
89 Mackelprang R, Lemaux PG. Genetic engineering and editing of plants: an analysis of new and persisting questions [J]. Annu Rev Plant Biol, 2020, 71: 659-687
90 Guarino C, Zuzolo D, Marziano M, Baiamonte G, Morra L, Benotti D, Gresia D, Stacul ER, Cicchella D, Sciarrillo R. Identification of native-metal tolerant plant species in situ: environmental implications and functional traits [J]. Sci Total Environ, 2019, 650: 3156-3167


Last Update: 2021-10-25