|Table of Contents|

Functional pan-genome analyses of hydrocarbon biodegradation by diverse Pseudomonas aeruginosa(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2021 05
Page:
1281-1288
Research Field:
Articles
Publishing date:

Info

Title:
Functional pan-genome analyses of hydrocarbon biodegradation by diverse Pseudomonas aeruginosa
Author(s):
PAN Jincheng1 LI Yanbing1 LI Jing2? & MA Yanling1?
1College of Life Science, Northwest University, Xi’an 710069, China 2Xi’an Rege Biotechnology Co. Ltd., Xi’an 710065, China
Keywords:
Pseudomonas aeruginosa pan-genome core genome unique genome biodegradation
CLC:
-
PACS:
DOI:
10.19675/j.cnki.1006-687x.2020.06046
DocumentCode:

Abstract:
As a versatile degrader, Pseudomonas aeruginosa has promising applications in removing both saturated aliphatic and aromatic hydrocarbons. To present bacterial genomic characteristics, functional genomic analysis of 10 P. aeruginosa strains was employed to interpret the core genome and pan-genome, the potential of hydrocarbon biodegradation, and the central pathway of aromatic compound degradation. Most of the homologous genes constituted the core genome that contained 4 923 genes accounting for 56.2% of the pan-genome, with a tiny portion of unique types of genomic evidence in these strains. The open pan-genome was about to close momentarily with its growing number of genomes, implying that the ability to exchange genetic information with the external condition by HGT was feeble among the selected strains of P. aeruginosa. The most abundant genes within the core genome were those that encode nutrient transporters and a two-component system. Genes that encode amino acid metabolism (synthesis and degradation), biofilm formation, and flagella assembly?were all part of the core genome. Moreover, the KEGG annotation of the core genes demonstrated that β-ketoadipate, homoprotocatechuate, homogentisate, and gentisate pathways were the main catabolic processes of aromatic compounds in the P. aeruginosa strains, which concurrently possessed a relatively complete alkane hydroxylase system. Based on the GC content, flanked transposase, and integrase coding genes, it could be concluded that the aromatic compound degradation gene clusters in P. aeruginosa could be obtained through horizontal gene transfer. Functional pan-genome analysis of these 10 strains showed that the frequency of HGT in P. aeruginosa to obtain new genes from the outside world was relatively weak and had a complete system to degrade hydrocarbons. The results would be beneficial for better understanding the genomic composition and characteristics and providing useful information on the potential and mechanism of degradation of P. aeruginosa.

References

1 Holliger C, Gaspard S, Glod G, Heijman C, Schumacher W, Schwarzenbach RP, Vazquez F. Contaminated environments in the subsurface and bioremediation: organic contaminants [J]. FEMS Microbiol Rev, 1997, 20 (3-4): 517-523
2 Sarma PM, Bhattacharya D, Krishnan S, Lal B. Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium, Leclercia adecarboxylata [J]. Appl Environ Microbiol, 2004, 70 (5): 3163-3166
3 Ulrici W. Contaminant soil areas, different countries and contaminant monitoring of contaminants [J]. Soil Decon Biotechnol, 2020, 11: 5-42
4 Head IM, Jones DM, R?ling WFM. Marine microorganisms make a meal of oil [J]. Nat Rev Microbiol, 2006, 4 (3): 173-182
5 Margesin R, Labbe D, Schinner F, Greer C, Whyte L. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils [J]. Appl Environ Microbiol, 2003, 69 (6): 3085-3092
6 Hamamura N, Olson SH, Ward DM, Inskeep WP. Microbial population dynamics associated with crude-oil biodegradation in diverse soils [J]. Appl Environ Microbiol, 2006, 72 (9): 6316-6324
7 Hazen TC, Dubinsky EA, Desantis TZ, Andersen GL, Piceno YM. Deep-sea oil plume enriches indigenous oil-degrading bacteria [J]. Science, 2010, 330 (6001): 204-208
8 Yenn R, Borah M, Boruah HD, Roy AS, Baruah R, Saikia N, Sahu O, Tamuli A. Phytoremediation of abandoned crude oil contaminated drill sites of assam with the aid of a hydrocarbon-degrading bacterial formulation [J]. Int J Phytoremediat, 2014, 16 (7-12): 909-925
9 Roy AS. Bioremediation of crude oil contaminated tea plantation soil using two Pseudomonas aeruginosa strains AS 03 and NA 108 [J]. Afr J Biotechnol, 2013, 12: 2600-2610
10 Roy AS, Baruah R, Borah M, Singh AK, Deka Boruah HP, Saikia N, Deka M, Dutta N, Chandra Bora T. Bioremediation potential of native hydrocarbon degrading bacterial strains in crude oil contaminated soil under microcosm study [J]. Int Biodeter Biodegr, 2014, 94: 79-89
11 Sangkharak K, Choonut A, Rakkan T, Prasertsan P. The degradation of phenanthrene, pyrene, and fluoranthene and its conversion into medium-chain-length polyhydroxyalkanoate by novel polycyclic aromatic hydrocarbon-degrading bacteria [J]. Curr Microbiol, 2020, 77: 897-909
12 Arino S, Marchal R, Vandecasteele J P. Involvement of a rhamnolipid-producing strain of Pseudomonas aeruginosa in the degradation of polycyclic aromatic hydrocarbons by a bacterial community [J]. J Appl Microbiol, 1998, 84 (5): 769-776
13 Binnewies TT, Motro Y, Hallin PF, Lund O, Dunn D, La T, Hampson DJ, Bellgard M, Wassenaar TM, Ussery DW. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries [J]. Funct Integr Genomic, 2006, 6 (3): 165-185
14 Tettelin H, Masignani V, Cieslewicz M, Donati C, Medini D, Ward N, Angiuoli S, Crabtree J, Jones A, Durkin A. Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-genome” [J]. PNAS, 2005, 102 (39): 13950-13955
15 Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R. The microbial pan-genome [J]. Curr Opin Genet Dev, 2005, 15 (6): 589-594
16 Gao S, Wu J, Stiller J, Zheng Z, Liu C. Identifying barley pan-genome sequence anchors using genetic mapping and machine learning [J]. J Theor Appl Genet, 2020, 133: 2535-2544
17 Nathamuni S, Jangam AK, Katneni VK, Selvaraj A, Koyadan VK. Insights on genomic diversity of Vibrio spp. through pan-genome analysis [J]. Ann Microbiol 2019, 69 (4): 1547–1555
18 Zhao YB, Sun C, Zhao DY, Zhang YD, You Y, Jia XM, Yang JH, Wang LP, Wang JY, Fu HH. PGAP-X: extension on pan-genome analysis pipeline [J]. J BMC Genom, 2018, 19 (S1): 36
19 方源, 谢柏盛, 黄婷, 郑鑫, 许子牧, 汪家权. 34株假单胞菌的泛基因组分析[J], 应用与环境生物学报, 2021, 27 (1): 1031-1038 [Fang Y, Xie BS, Huang T, Zheng X, Xu ZM, Wang JQ. Pan-genomic characteristic of 34 Pseudomonas strains [J]. Chin J Appl Environ Biol, 2021, 27 (4): 1031-1038]
20 Fraser-Liggett CM. Insights on biology and evolution from microbial genome sequencing [J]. Genom Res, 2005, 15 (12): 1603-1610
21 Dobrindt U, Hochhut B, Hentschel U, Hacker J. Genomic islands in pathogenic and environmental microorganisms [J]. Nat Rev Microbiol, 2004, 2 (5): 414-424
22 庄绪冉, 朱泳璋. 细菌泛基因组学的研究[J]. 上海交通大学学报(医学版), 2012, 32 (11): 1440-1443 [Zhuang XR, Zhu YZ. Research progress of bacterial pan-genome [J]. J Shanghai Jiaotong Univ, 2012, 32 (11): 1440-1443]
23 Frost LS, Leplae R, Summers AO, Toussaint A. Mobile genetic elements: the agents of open source evolution [J]. Nat Rev Microbiol, 2005, 3 (9): 722-732
24 Stover CK, Pham XQ T, Erwin AL, Mizoguchi SD, Olson MV. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen [J]. Nat Chem Biol, 2000, 406 (6799): 959-964
25 Gai Z, Zhang Z, Wang X, Tao F, Xu P. Genome sequence of Pseudomonas aeruginosa DQ8, an efficient degrader of n-alkanes and polycyclic aromatic hydrocarbons [J]. J Bacteriol, 2012, 194 (22): 6304-6305
26 Liu H, Liang R, Tao F, Ma C, Liu Y, Liu X, Liu J. Genome sequence of Pseudomonas aeruginosa strain SJTD-1-1, a bacterium capable of degrading long-chain alkanes and crude oil [J]. J Bacteriol, 2012, 194 (17): 4783-4784
27 Das D, Baruah R, Sarma Roy A, Singh AK, Deka Boruah HP, Kalita J, Bora TC. Complete genome sequence analysis of Pseudomonas aeruginosa N002 reveals its genetic adaptation for crude oil degradation [J]. Genomics, 2015, 105 (3): 182-190
28 Nakano K, Terabayashi Y, Shiroma A, Shimoji M, Hirano T. First complete genome sequence of Pseudomonas aeruginosa (schroeter 1872) migula 1900 (DSM 50071t), determined using pacbio single-molecule real-time technology [J]. Genom A, 2015, 3 (4): e00915-00932
29 Fujihara H, Yamazoe A, Hosoyama A, Suenaga H, Kimura N. Draft genome sequence of Pseudomonas aeruginosa KF702 (NBRC 110665), a polychlorinated biphenyl-degrading bacterium isolated from biphenyl-contaminated soil [J]. Genome A, 2015, 3 (3): e00515-00517
30 Dong W, He C, Li Y, Huang C, Chen F, Ma Y. Complete genome sequence of a versatile hydrocarbon degrader, Pseudomonas aeruginosa DN1 isolated from petroleum-contaminated soil [J]. Gen Rep, 2017, 7: 123-126
31 Chan KG, Yin WF, Lim YL. Complete genome sequence of Pseudomonas aeruginosa strain YL84, a quorum-sensing strain isolated from compost [J]. Genome A, 2014, 2 (2): e00214-00246
32 Tao W, Jie X, Xie W, Yao Z, Yang H, Sun C, Li X. Pseudomonas aeruginosa L10: a hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (phragmites australis) [J]. Front Microbiol, 2018, 9: 1870-1874
33 Ohtsubo Y, Sato T, Kishida K, Tabata M, Ogura Y, Hayashi T, Tsuda M, Nagata Y. Complete genome sequence of Pseudomonas aeruginosa MTB-1, isolated from a microbial community enriched by the technical formulation of hexachlorocyclohexane [J]. Genome A, 2014, 2 (1): e01113-01130
34 Sudhir, Kumar, Glen, Stecher, Koichiro, Tamura. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets [J]. Mol Biol Evol, 2016, 33 (7): 1870-1874
35 Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Mol Biol Evol, 1987, 4 (4): 406-425
36 Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap [J]. Evolution, 1985, 39 (4): 783-791
37 Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT suite: a web server for clustering and comparing biological sequences [J]. Bioinformatics, 2010, 26 (5): 680-682
38 Chaudhari NM, Gupta VK, Dutta C. BPGA-an ultra-fast pan-genome analysis pipeline [J]. Sci Rep, 2016, 6: 1-10
39 Wu S, Zhu Z, Fu L, Niu B, Li W. WebMGA: a customizable web server for fast metagenomic sequence analysis [J]. BMC Genom, 2011, 12: 444
40 Yuki M, Masumi I, Shujiro O, Yoshizawa AC, Minoru K. KAAS: an automatic genome annotation and pathway reconstruction server [J]. Nucl Acids Res, 2007, 35: W182-185
41 Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. Phast: a fast phage search tool [J]. Nucleic Acids Res, 2011, 39: W347-352
42 Gao J, Ellis LBM, Wackett LP. The university of minnesota biocatalysis/biodegradation database: improving public access [J]. Nucleic Acids Res, 2009, 38: D488-491
43 Jiménez JI, Nogales J, García JL, Díaz E. A genomic view of the catabolism of aromatic compounds in Pseudomonas [M]. Handbook of hydrocarbon and lipid microbiology. Berlin: Springer Berlin Heidelberg, 2010, 1297-1325
44 Santos PM, Benndorf D, Sá-Correia I. Insights into Pseudomonas putida KT2440 response to phenol-induced stress by quantitative proteomics [J]. Proteom, 2004, 4 (9): 2640-2652
45 Julieta B, Nadia S, Ricardo H, Silvina F, Marcus L, Lucila S. A genomic view of food-related and probiotic Enterococcus strains [J]. DNA Res, 2016, 24 (1): 11-24
46 Mosquera-Rendón J, Rada-Bravo AM, Cárdenas-Brito S, Corredor M, Restrepo-Pineda E, Benítez-Páez A. Pangenome-wide and molecular evolution analyses of the Pseudomonas aeruginosa species [J]. BMC Genomics, 2016, 17: 45
47 Udaondo Z, Molina L, Segura A, Duque E, Ramos JL. Analysis of the core genome and pangenome of Pseudomonas putida [J]. Environ Microbiol, 2016, 18 (10): 3268-3283
48 付静, 秦启伟. 30株大肠杆菌的泛基因组学特征分析[J], 遗传, 2012, 34: 765-772 [Fu J, Qin QW. Pan-genomics analysis of 30 Escherichia coli genomes [J]. Hereditas, 2012, 34 (6): 765-772]
49 Gogarten JP, Townsend JP. Horizontal gene transfer, genome innovation and evolution [J]. Nat Rev Microbiol, 2005, 3 (9): 679-687
50 Sampedro I, Parales RE, Krell T, Hill JE. Pseudomonas chemotaxis [J]. FEMS Microbiol Rev, 2015, 39: 17-46
51 Kirov SM. Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis [J]. FEMS Microbiol Lett, 2006, 224 (2): 151-159
52 Ron EZ, Rosenberg E. Biosurfactants and oil bioremediation [J]. Curr Opin Biotechnol, 2002, 13 (3): 249-252
53 Kezrane I, Harouna BM, Hamadache M, Benkortbi O, Amrane AJEM. Assessment use of hydrocarbons sludge as a substrate for the production of biosurfactants by Pseudomonas aeruginosa ATCC 27853 [J]. Environ Monit Assess, 2020, 192 (5): doi 10.1007/s10661-020-08269.3
54 Rojo F. Degradation of alkanes by bacteria [J]. Environ Microbiol, 2009, 11 (10): 2477-2490
55 Seo J, Su, Keum Y, Soo, Li QX. Bacterial degradation of aromatic compounds [J]. Int J Environ Res Pub, 2009, 6 (1): 278-309
56 Lu XY, Tong Z, Fang HP. Bacteria-mediated PAH degradation in soil and sediment [J]. Appl Microbiol Biot, 2011, 89 (5): 1357-1371
57 Harwood CS, Parales RE. The β-ketoadipate pathway and the biology of self-identity [J]. Annu Rec Microbiol, 1996, 50: 553-590
58 Zhao Q, Yue S, Bilal M, Hu H, Wang W, Zhang X. Comparative genomic analysis of 26 Sphingomonas and Sphingobium strains: dissemination of bioremediation capabilities, biodegradation potential and horizontal gene transfer [J]. Sci Total Environ, 2017, 609: 1238-1247

Memo

Memo:
-
Last Update: 2021-10-25