|Table of Contents|

Diversity and niche characteristics of herbaceous layer plants in the early stage of forest gap reconstruction of inefficient Cupressus funebris plantations(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2021 05
Research Field:
Publishing date:


Diversity and niche characteristics of herbaceous layer plants in the early stage of forest gap reconstruction of inefficient Cupressus funebris plantations
CHEN Luman1 L? Qian1 LIU Size1 LUO Yan1 CHEN Xiaohong1 2 CHEN Yuqin1 CHEN Gang1 FAN Chuan1 2 & LI Xianwei1 2 3?
1 College of Forestry, Sichuan Agricultural University, Chengdu 611130, China 2 Key Laboratory of National Forestry and Grassland Administration on Forest Resources Conservation and Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, China 3 Forestry Ecological Engineering in the Upper Reaches of Yangtze River Key Laboratory of Sichuan Province, Chengdu 611130, China
Cupressus funebris inefficient plantation forest gap reconstruction herbaceous layer plant diversity niche

The herbaceous layer is sensitive to environmental change; it can rapidly reflect the impact of reconstruction in inefficient Cupressus funebris plantations to effectively improve their ecological service function and forest quality. In this study, inefficient Cupressus funebris plantations in the hilly area of central Sichuan were selected for research, and the herbaceous layer plant diversity and niche change pattern of different area forest gaps after one year of gap reconstruction were analyzed using three different forest gap scales (50 m2, 100 m2, and 200 m2). The results showed that in comparison with the control (CK), the Simpson index, Shannon-Wiener index, and richness index of herbaceous plants in the forest land increased significantly after gap reconstruction (P < 0.05), and reached the optimum within the 100 m2 forest gap. With the increase in the forest gap area (from 50 m2 to 200 m2), the changes in different indexes differed and the Pielou index continued to increase. The Simpson index and Shannon-Wiener index both increased first and then stabilized, while richness index stabilized first and then decreased, and 100 m2 was the dividing point for the change trend. The niche breadth of shade-requiring plants such as Ficus tikoua was the largest before the gap reconstruction, and the ability of regeneration species, such as Miscanthus floridulus, to adapt to the environment and use resources was stronger after the gap reconstruction, and the niche breadth continuously widened. With the increase in forest gap area (from 50 m2 to 200 m2), the whole herbaceous community in the forest presented a positive neutral succession pattern. Because of the short gap reconstruction time, the regeneration species were still in the resource utilization and expansion stage. The niche overlap of each treatment was low (< 0.1), the niche differentiation difference was large, the interspecific competition was small, and the change rule between niche breadth and niche overlap was not obvious. The overall niche differentiation of the herbaceous layer in the 100 m2 forest gap was more uniform. This study shows that the initial stage of forest gap reconstruction can improve the diversity of herbaceous layer plants and change the structure of the herbaceous community of inefficient Cupressus funebris plantations. Considering the improvement of biodiversity function and the stability of ecosystem, 100 m2 is a suitable area for forest gap reconstruction.


1 覃林. 统计生态学[M]. 北京: 中国林业出版社, 2009: 84-91 [Qin L. Statistical Ecology [M]. Beijing: China Forestry Press, 2009: 84-91]
2 Chesson P. Mechanisms of maintenance of species diversity [J]. Annu Rev Ecol Syst, 2000, 31 (1): 343-366
3 Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA. Disentangling the drivers of b diversity along latitudinal and elevational gradients [J]. Science, 2011, 333 (6050): 1755-1758
4 Silvertown J, Dodd M, Gowing D. Phylogeny and the niche structure of meadow plant communities [J]. J Ecol, 2001, 89 (3): 428-435
5 郝建锋, 李艳, 齐锦秋, 裴曾莉, 黄雨佳, 蒋倩, 陈亚. 人为干扰对碧峰峡栲树次生林群落物种多样性及其优势种群生态位的影响[J]. 生态学报, 2016, 36 (23): 7678-7688 [Hao JF, Li Y, Qi JQ, Pei ZL, Huang YJ, Chen Y. Effects of anthropogenic disturbances on the species diversity and niche of the dominant populations in a Castanopsis fargesii secondary forest community in Bifengxia, Sichuan [J]. Acta Ecol Sin, 2016, 36 (23): 7678-7688]
6 李永兵, 王辉, 付菁. 子午岭辽东栎林林窗主要树种更新生态位[J]. 生态学杂志, 2008, 27 (12): 2062-2066 [Li YB, Wang H, Fu Q. Regeneration niche of main tree species in Quercus liaotungensis gaps in Ziwuling mountain [J]. Chin J Ecol, 2008, 27 (12): 2062-2066]
7 Berdugo MB, Dovciak M, Nakashizuka T. Bryophytes in fir waves: forest canopy indicator species and functional diversity decline in canopy gaps [J]. J Veg Sci, 2019, 30 (2): 235-246
8 Sapkota IP, Tigabu M, Odén PC. Species diversity and regeneration of old-growth seasonally dry Shorea robusta forests following gap formation [J]. J For Res, 2009, 20 (1): 7-14
9 Diaci J, Rozman J, Rozman A. Regeneration gap and microsite niche partitioning in a high alpine forest: are Norway spruce seedlings more drought-tolerant than beech seedlings? [J]. For Ecol Manag, 2020, 455: 117688
10 Kern CC, Montgomery RA, Reich PB, Strong TF. Canopy gap size influences niche partitioning of the ground-layer plant community in a northern temperate forest [J]. J Plant Ecol, 2013, 6 (1): 101-112
11 何朋俊, 李星月, 王谢, 苏宇, 李贤伟, 余波, 潘宗英. 川中丘陵柏木低效林开窗补阔初期土壤养分和酶活性变化[J]. 应用与环境生物学报, 2017, 23 (4): 693-700 [He PJ, Li XY, Wang X, Su Y, Li XW, Yu B, Pan ZY. Soil nutrient and enzymatic activity changes amidst the early stage of gap and mixed transformation of low-efficiency Cupressus funebris in the hilly area of the Central Sichuan Basin [J]. Chin J Appl Environ Biol, 2017, 23 (4): 693-700]
12 杜有新, 刘伟, 王军峰, 尤根彪, 叶和军, 练发良, 何小勇. 采伐林窗对白云山3种人工林林下植物多样性的早期影响[J]. 应用生态学报, 2018, 29 (7): 2121-2128 [Du YX, Liu W, Wang JF, You GB, Ye HJ, Lian FL, He XY. Early effects of forest harvesting gap on understory plant diversity of three different plantations in Baiyun mountain, China [J]. Chin J Appl Ecol, 2018, 29 (7): 2121-2128]
13 管云云, 叶钰倩, 钟远标, 费菲, 陈斌, 关庆伟. 林窗尺度对侧柏人工林土壤微生物量和功能多样性的影响[J]. 生态学报, 2018, 38 (2): 698-710 [Guan YY, Ye YQ, Zhong YB, Fei F, Chen B, Guan QW. Effects of forest gap size on the biomass and functional diversity of soil microbes in Platycladus orientalis plantations [J]. Acta Ecol Sin, 2018, 38 (2): 698-710]
14 梁晓东, 叶万辉. 林窗研究进展(综述) [J]. 热带亚热带植物学报, 2000 (4): 355-364 [Liang XD, Ye WH. Advances in study on forest gaps [J]. J Trop Subtrop Bot, 2001 (4): 355-364]
15 Mizunaga H. Do finer gap mosaics provide a wider niche for Quercus gilva, in young Japanese cedar plantations than coarser mosaics? Simulation of spatial heterogeneity of light availability and photosynthetic potential [J]. Can J For Res, 2007, 37 (37): 1545-1553
16 Claudia B. Non-industrial Private-forest owners: possibilities for increasing adoption of close-to-nature forest management [J]. Eur J For Res, 2005, 123 (4): 293-303
17 Gallet S, Roze F. Resistance of Atlantic heathlands to trampling in Brittany (France): influence of vegetation type, season and weather conditions [J]. Biol Conserv, 2001, 97 (2): 189-198
18 陈丝露, 赵敏, 李贤伟, 范川, 肖宝茹. 柏木低效林不同改造模式优势草本植物多样性及其生态位[J]. 生态学报, 2018, 38 (1): 143-155 [Chen SL, Zhao M, Li XW, Fan C, Xiao BR. Study on plant diversity and niche characteristics of dominant herbaceous populations under different reconstruction patterns in low efficiency stands of Cupressus funebris [J]. Acta Ecol Sin, 2018, 38 (1): 143-155]
19 李荣伟. 长江上游防护林体系建设与经营利用[M]. 成都: 四川科学技术出版社, 2004: 1-6 [Li RW. Construction, Management and Utilization of Shelter Forest System in the Upper Reaches of the Yangtze River [M]. Chengdu: Sichuan Science and Technology Press, 2004: 1-6]
20 龚固堂, 黎燕琼, 朱志芳, 陈俊华, 慕长龙, 吴雪仙, 郑绍伟. 川中丘陵区人工柏木防护林适宜林分结构及水文效应[J]. 生态学报, 2012, 32 (3): 923-930 [Gong GT, Li YQ, Zhu ZF, Chen JH, Mu CL, Wu XX. The suitable stand structure and hydrological effects of the Cypress protection forests in the central Sichuan hilly region [J]. Acta Ecol Sin, 2012, 32 (3): 923-930]
21 谢雨彤, 简保磊, 李贤伟, 黄卫国, 郑志高, 邢国亮. 低效柏木林窗改造模式下香椿细根分解及其养分释放[J]. 应用与环境生物学报, 2018, 24 (3): 525-532 [Xie YT, Jian BL, Li XW, Huang WG, Zheng ZG, Xing GL. Fine root decomposition and nutrient release in Toona sinensis plantation under the reconstruction mode of low-efficiency cypress forest gaps [J]. Chin J Appl Environ Biol, 2018, 24 (3): 525-532]
22 郑晓阳, 赵冲, 刘青青, 冯玉超, 朱晨曦, 王正宁, 刘博. 成熟杉木人工林林下草本层生态位特征[J]. 生态学杂志, 2018, 37 (2): 332-338 [Zheng XY, Zhao C, Liu QQ, Feng YC, Zhu CX, Wang ZN, Liu B. Niche characteristics of understory herb layer in a mature chinese fir plantation [J]. Chin J Ecol, 2018, 37 (2): 332-338]
23 马克平, 刘玉明. 生物群落多样性的测度方法Ⅰα多样性的测度方法(下) [J]. 生物多样性, 1994, 2 (4): 231-239 [Ma KP, Liu YM. Measurement method of community diversity I measurement method of a diversity (II) [J]. Chin Biodivers, 1994, 2 (4): 231-239]
24 李契, 朱金兆, 朱清科. 生态位理论及其测度研究进展[J]. 北京林业大学学报, 2003 (1): 100-107 [Li J, Zhu JZ, Zhu QK. A review on niche theory and niche metrics [J]. J Beijing Forest Univ, 2003 (1): 100-107]
25 Jorge S, Pilar R, Ella VD. Implications of the hierarchical structure of biodiversity for the development of ecological indicators of sustainable use [J]. Ambio, 2000, 29 (3): 136-142+182
26 石燕香, 叶钦良, 张蒙. 自然保护区森林生态系统服务功能评估方法与指标研究综述[J]. 林业与环境科学, 2019, 35 (4): 123-127 [Shi YX, Ye QL, Zhang M. Review of forest ecosystem service function evaluation in nature reserve [J]. For Environ Sci, 2019, 35 (4): 123-127]
27 潘业田. 林窗改造模式对川中丘陵区柏木低效林植物及土壤动物多样性的影响[D]. 四川农业大学, 2014 [Pan YT. Influence of different gap reconstruction mode on the understory plant and soil animal biodiversity of low-efficiency Cypress forest in hilly area of central Sichuan, China [D]. Sichuan Agricultural University, 2014
28 Grime JP. Plant strategies, vegetation processes, and ecosystem properties [J]. Plant Sci, 2001, 161 (4)
29 Sára M, Flóra T, András B, Pe?ter O. Environmental drivers of the composition and diversity of the herb layer in mixed temperate forests in Hungary [J]. Plant Ecol, 2016, 217 (5): 549-563
30 宋新章, 肖文发. 林隙微生境及更新研究进展[J]. 林业科学, 2006, 42 (5): 114-119 [Song XZ, Xiao WF. Research advances of microsites and regeneration within canopy gap [J]. Sci Silv Sin, 2006, 42 (5): 114-119]
31 韩文娟, 袁晓青, 张文辉. 油松人工林林窗对幼苗天然更新的影响[J]. 应用生态学报, 2012, 23 (11): 2940-2948. [Han WJ, Yuan XQ, Zhang WH. Effects of gap size on seedling natural regeneration o in Pinus tabulaeformis plantation [J]. Chin J Appl Ecol, 2012, 23 (11): 2940-2948]
32 Zulkiflee AL, George AB. The effects of gap size on some microclimate variables during late summer and autumn in a temperate broadleaved deciduous forest [J]. Int J Biometeorol, 2010, 54: 119-129
33 商侃侃, 陈波, 达良俊. 浙江天目山孑遗落叶阔叶树种的种群结构及更新策略[J]. 应用生态学报, 2018, 29 (2): 361-368 [Shang KK, Chen B, Da LJ. Population structure and regeneration strategy of relict deciduous broadleaved trees on mount Tianmu, Zhejiang province, China [J]. Chin J Appl Ecol, 2018, 29 (2): 361-368]
34 杨育林, 李贤伟, 周义贵, 刘运科. 林窗式疏伐对川中丘陵区柏木人工林生长和植物多样性的影响[J]. 应用与环境生物学报, 2014, 20 (6): 971-977 [Yang YL, Li XW, Zhou YG, Liu YK. Effects of gap thinning on growth and diversity of a cypress plantation in the hilly region of central Sichuan [J]. Chin J Appl Environ Biol, 2014, 20 (6): 971-977]
35 Connell JH. Diversity in tropical rain forests and coral reefs [J]. Science, 1978, 19 (9): 1302-1310
36 许强, 毕润成, 张钦弟, 苗艳明, 秦晋, 刘晓宁. 山西庞泉沟华北落叶松林林窗物种多样性动态变化[J]. 生态学杂志, 2014, 33 (11): 2913-2920 [Xu Q, Bi RC, Zhang QD, Miao YM, Qin J, Liu XN. Dynamic patterns of species diversity in gaps of Larix principis-rupprechtii plantation in Pangquangou in Shanxi province, China [J]. Chin J Ecol, 2014, 33 (11): 2913-2920]
37 姚俊宇, 伍炫蓓, 孙千惠, 吴霞, 姚小兰, 郝建锋, 齐锦秋. 林窗大小对川西马尾松人工林林下物种多样性和生物量的影响[J]. 应用与环境生物学报, 2018, 24 (2): 214-220 [Yao JY, Wu XB, Sun QH, Wu X, Yao XL, Hao JF, Qi JQ. Effects of canopy gap size on understory species diversity and biomass in a Pinus massoniana plantation in western Sichua [J]. Chin J A ppl Ecol, 2018, 24 (2):214-220
38 张小鹏, 王得祥, 常明捷, 康海斌, 郑玉莹. 林窗干扰对森林更新及其微环境影响的研究[J]. 西南林业大学学报, 2016, 36 (6): 170-177 [Zhang XP, Wang DX, Chang MJ, Kang HB, Zheng YY. A review for effects of forest gap on forest regeneration and its microenvironment [J]. J Sw For Univ, 2016, 36 (6): 170-177]
39 Boulangeat I, Sébastien L, Jérémie VE, Garraud L, Thuiller W. Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients [J]. J Biogeogr, 2015, 39 (1): 204-214
40 赵燕波, 张丹桔, 张健, 周泓杨, 魏大平, 张捷, 袁亚玲. 不同郁闭度马尾松人工林林下植物多样性[J]. 应用与环境生物学报, 2016, 22 (6): 1048-1054 [Zhao YB, Zhang DJ, Zhang J, Zhou HY, Wei DP, Zhang J, Yuan YL. Understory vegetation diversity of Pinus massoniana plantations with various canopy density [J]. Chin J Appl Environ Biol, 2016, 22 (6): 1048-1054]
41 Kazmierczak M, Wiegand T, Huth A. A neutral vs. non-neutral parametrizations of a physiological forest gap model [J]. Ecol Modell, 2014, 288: 94-102
42 Thompson K, Ceriani AM. No relationship between range size and germination niche width in the UK herbaceous flora [J]. Funct Ecol, 2003, 17 (3)
43 只佳增, 周劲松, 杜浩, 李宗锴, 王朝, 高梅, 张光勇, 陈伟强. 云南山地香蕉园主要杂草生态位[J]. 热带作物学报, 2020, 41 (2): 394-400 [Zhi JZ, Zhou JS, Du H, Li ZK, Wang C, Gao M, Zhang GY, Chen WQ. Ecological niche of dominant weeds in mountainous Banana fields of Hekou, Yunnan, China [J]. Chin J Trop Crop, 2020, 41 (2): 394-400
44 李德志, 石强, 臧润国, 王绪平, 盛丽娟, 朱志玲, 王长爱. 物种或种群生态位宽度与生态位重叠的计测模型[J]. 林业科学, 2006 (7): 95-103 [Li DZ, Shi Q, Zang RG, Wang XP, Sheng LJ, Zhu ZL, Wang CA. Models for niche breadth and niche overlap of species or populations [J]. Sci Silv Sin, 2006 (7): 95-103]
45 牛慧慧, 陈辉, 付阳, 杨祎, 张斯琦, 张博雄. 柴达木盆地东部荒漠植物生态位特征[J]. 生态学报, 2019, 39 (8): 2862-2871 [Niu HH, Chen H, Fu Y, Yang Y, Zhang SQ, Zhang BX. Ecological niche characteristics of desert plants in the eastern Qaidam basin [J]. Acta Ecol Sin, 2019, 39 (8): 2862-2871]
46 庞圣江, 张培, 杨保国, 刘士玲, 邓硕坤, 贾宏炎. 广西大青山西南桦人工林草本优势种群生态位研究[J]. 中南林业科技大学学报, 2018, 38 (6): 94-101 [Pang SJg, Zhang P, Yang BG, Liu SL, Deng SK, Jia HY. Niche characteristics of dominant herbage populations within Betula alnoides plantations in Daqingshan mountain areas of Guangxi [J]. J Cent S Univ For Technol, 2018, 3(6): 94-101]


Last Update: 2021-10-25