|Table of Contents|

Anaerobic digestion characteristics and microbial community of Maotai-flavor stillage biogas fermentation(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2021 05
Research Field:
Publishing date:


Anaerobic digestion characteristics and microbial community of Maotai-flavor stillage biogas fermentation
XIE Tongtong SUN Xiaojiao WU Kaixuan CHI Mingmei ZHANG Peiyu & QIU Yanling?
School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
Maotai-flavor stillage anaerobic digestion WWE1 intermediate metabolite microbial community

Vinasse is easy to acidify and produces many volatile organic acids (VFAs), which are good fermentation materials for biogas production. Batch experiments were conducted to study the characteristics of anaerobic digestion with vinasse. Culture and molecular?techniques?were used?to explore microbial diversity. Maotai-flavor stillage with solid concentrations of 4.3% and 7.8% was used as the sole carbon source. Within 30 days and 50 days of fermentation, the cumulative biogas yields were 287 mL/g TS and 360 mL/g TS, and the total solids (TS) removal rates were 20.8% and 27.4%, respectively. During the anaerobic digestion of stillage, acetate, propionate, and butyrate were detected as the main intermediate metabolites. Aromatic compounds such as p-cresol, phenylpropionate, phenol, and benzoate were also detected as transient intermediates. Propionate accumulated significantly during the degradation of distillers’ grains (2 894-4 495 mg/L), suggesting that propionate accumulation has become an important factor restricting the stable operation of anaerobic reactors. Bacterial and archaeal community structures were investigated using 16S rRNA gene-based high-throughput sequencing technology. Results showed that the phyla Bacteroidetes, Firmicutes, Synergistetes, and Candidatus “Cloacimonetes” (WWE1) were the most frequently detected. WWE1 members of the W5 and W27 genera accounted for 13.8%-30.67%. Methanosarcina mazei, an acetate-trophic methanogen, and Methanofollis ethanolicus, a hydrogen-trophic methanogen, are dominant archaea that play essential roles in methanogenesis. Results demonstrated propionate accumulation has become an important factor restricting the stable operation of anaerobic reactors, and WWE1 uncultured microbes play an important role in the anaerobic digestion of Maotai-flavor stillage.


1 顾翰琦. 酒糟高值化综合利用方式研究现状[J]. 南方农机, 2018, 49 (12): 15-16 [Gu HQ. Research status of high value comprehensive utilization of distiller’s grains [J]. Chin S Agric Mach, 2018, 49 (12): 15-16]
2 Fu SF, Xu XH, Dai M, Yuan XZ, Guo RB. Hydrogen and methane production from vinasse using two-stage anaerobic digestion [J]. Proc Saf Environ Protect, 2017, 107: 81-86
3 Ao T, Li R, Chen Y, Li C, Li Z, Liu XF, Ran Y, Li D. Anaerobic thermophilic digestion of maotai-flavored distiller’s grains: process performance and microbial community dynamics [J]. Energy Fuels, 2019, 33 (9): 8804-8811
4 Kan X, Zhang JX, Tong YW, Wang CH. Overall evaluation of microwave-assisted alkali pretreatment for enhancement of biomethane production from brewers’ spent grain [J]. Energy Conv Manag, 2018, 158: 315-326
5 Yu M, Gao M, Wang LH, Ren YY, Wu CF, Ma HZ, Wang QH. Kinetic modelling and synergistic impact evaluation for the anaerobic co-digestion of distillers’ grains and food waste by ethanol pre-fermentation [J]. Sci Pollut Res, 2018, 25 (30): 30281-30291
6 Kristin G, Elke H, Ralf C. Production of aromatic compounds during methanogenic degradation of straw in rice field soil [J]. Fems Microbiol Ecol, 2005, 52 (1): 43-48
7 Se?un M, Grilc V, Zupan?i? GD, Marin?ek-Logar R. Anaerobic digestion of brewery spent grain in a semi-continuous bioreactor: Inhibition by phenolic degradation products [J]. Acta Chim Slov, 2011, 58 (1): 158-166
8 乔江涛, 郭荣波, 袁宪正, 师晓爽, 许晓晖, 范晓蕾, 邱艳玲. 玉米秸秆厌氧降解复合菌系的微生物群落结构[J]. 环境科学, 2013, 34 (4): 1531-1539 [Phylogenetic analysis of methanogenic corn stalk degrading microbial communities [J]. Environ Sci, 2013, 34 (4): 1531-1539]
9 Glescerl LS, Greenberg AE, Eaton AD. Standard Methods for Examination of Water and Wastewater [M]. 20th Ed. Washington: American Public Heath Association, 1999
10 Goering HK, Van Soest PS. Forage Fiber Analysis USDA 2ARS Agric Handbook [M]. Washington: Gov Print, 1971: 387-598
11 Kennedy NA, Walker AW, Berry SH, Duncan SH, Farquarson FM, Louis P, Thomson JM, Satsangi J, Flint HJ, Parkhill J, Lees CW, Hold GL. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing [J]. PLoS ONE, 2014, 9 (2): e88982
12 Feng H, Guo J, Wang W, Song XZ, Yu YQ. Soil depth determines the composition and diversity of bacterial and archaeal communities in a poplar plantation [J]. Forests, 2019, 10 (7): 550
13 谢彤彤, 吴凯旋, 迟明妹, 孙晓娇, 张培玉, 于德爽, 邱艳玲. 酒糟厌氧消化液中丙酸互营降解菌的富集培养与群落解析[J]. 应用与环境生物学报, 2020, 26 (6): 1406-1410 [Enrichment and phylogenetic analysis of syntrophic propionate-degrading consortia from anaerobic digestion of vinasse [J]. Chin J Appl Environ Biol, 2020, 26 (6): 1406-1410]
14 Cole JR, Chai B, Marsh TL, Farris RJ, Wang Q, Kulam SA, Chandra S, McGarrell DM, Schmidt TM, Garrity GM, Tiedje JM. The ribosomal database project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy [J]. Nucleic Acids Res, 2003, 31 (1): 442-443
15 Schloss PD, Handelsman J. Toward a census of bacteria in soil [J]. Plos Comp Biol, 2006, 2 (7): 786-793
16 Wang QH, Kuninobu M, Ogawa HI. Degradation of volatile fatty acids in highly efficient anaerobic digestion [J]. Biomass Bioenergy, 1999, 16 (6): 407-416
17 Barredo MS, Evison LM. Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii and Methanospirillum hungatei at different pH values [J]. Appl Environ Microbiol, 1991, 57 (6): 1764-1769
18 Wang YY, Zhang YL, Wang JB, Meng L. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria [J]. Biomass Bioenergy, 2009, 33 (5): 848-853
19 Glissmann K, Hammer E, Conrad R. Production of aromatic compounds during methanogenic degradation of straw in rice field soil. [J]. FEMS Microbiol Ecol, 2005, 52 (1) : 43-48
20 Hecht C, Bieler S, Griehl C. Liquid chromatographic-mass spectrometric-analyses of anaerobe protein degradation products [J]. J Chrom A, 2005, 1088 (1): 121-125
21 Qiao JT, Qiu YL, Yuan XZ, Shi XS, Xu XH, Guo RB. Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw [J]. Bioresour Technol, 2013, 143: 512-518
22 Hecht C, Griehl C. Investigation of the accumulation of aromatic compounds during biogas production from kitchen waste [J]. Bioresour Technol, 2009, 100 (2): 654-658
23 Rétfalvi T, Tukacs-Hájos A, Szabó P. Effects of artificial overdosing of p-cresol and phenylacetic acid on the anaerobic fermentation of sugar beet pulp [J]. Int Biodeter Biodegr, 2013, 83: 112-118
24 Fedorak PM, Hrudey SE. The effects of phenol and some alkyl phenolics on batch anaerobic methanogenesis [J]. Water Res, 1984, 18 (3): 361-367
25 Yin Y, Lei F, Zhu LY, Li SJ, Wu ZW, Zhang RF, Gao GF, Zhu BL, Wang X. Exposure of different bacterial inocula to newborn chicken affects gut microbiota development and ileum gene expression [J]. ISME J, 2009, 4 (3): 367-376
26 Hernandez-Eugenio G, Fardeau ML, Cayol JL, Patel Bharat KC, Thomas P, Macarie H, Garcia JL, Ollivier B. Sporanaerobacter acetigenes gen. nov. sp. nov., a novel acetogenic, facultatively sulfur-reducing bacterium [J]. Int J Syst Evol Microbiol, 2002, 52 (4): 1217-1223
27 Zhang CY, Liu XL, Dong XZ. Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically degrades short-chain fatty acids [J]. Int J Syst Evol Microbiol, 2005, 55 (2): 799-803
28 Pierre J, Valerie C, Marie-France D, Réjean B, Francois L, Richard V, Jean-Guy B. Cryptanaerobacter phenolicus gen. nov. sp. nov., an anaerobe that transforms phenol into benzoate via 4-hydroxybenzoate [J]. Int J Syst Evol Microbiol, 2005, 55 (1): 245-250
29 Hahnke S, Langer T, Koeck DE, Klocke M. Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov. sp. nov. isolated from mesophilic lab-scale biogas reactors and emended description of the genus Proteiniphilum [J]. Int J Syst Evol Microbiol, 2016, 66 (3): 1466-1475
30 Baena S, Fardeau ML, Labat M, Ollivier B, Thomas P, Garcia JL, Patel BK. Aminobacterium colombiensegen. nov. sp. nov., an amino acid-degrading anaerobe Isolated from anaerobic sludge [J]. Anaerobe, 1998, 4 (5): 241-250
31 Wang YW, Song JL, Zhai Y, Zhang C, Jacoline G, Wang HM, Chen XT, Zhao BQ, Zhao B, Ruan ZY. Romboutsia sedimentorum sp. nov. isolated from alkaline-saline lake sediment and emended description of the genus Romboutsia [J]. Int J Syst Evol Microbiol, 2015, 65 (4): 1193-1198
32 Rakia C, Denis LP, Catherine D, Patrick D, Jean W, Abdelghani S. Novel major bacterial candidate division within a municipal anaerobic sludge digester [J]. Appl Environ Microbiol, 2005, 71 (4): 2145-2153
33 Eric P, Annett K, Stéphanie B, Zoé R, Gábor G, Rakia C, Delphine R, Akila G, Patrick D, Abdelghani S, Claudine M, Jean W, Denis LP. “Candidatus Cloacamonas acidaminovorans”: genome sequence reconstruction provides a first glimpse of a new bacterial division [J]. J Bacter, 2008, 190 (7): 2572-2579
34 Limam RD, Chouari R, Mazéas L, Wu TD, Li TL, Julien GD, Jean-Luc GK, Mouldi S, Ahmed L, Abdelghani SThéodore B. Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose [J]. Microbiol Open, 2014, 3 (2): 156-157
35 Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, B?umer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, B?meke M, Steckel S. The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea [J]. J Microbiol Biotechnol, 2002, 4 (4): 453-461
36 Imachi H, Sakai S, Nagai H, Yamaguchi T, Takai K. Methanofollis ethanolicus sp. nov., an ethanol-utilizing methanogen isolated from a lotus field [J]. Int J Syst Evol Microbiol, 2009, 59 (4): 800-805


Last Update: 2021-10-25