|Table of Contents|

Variations in floral traits of Rhododendron przewalskii with slope aspect in the southeastern Tibetan Plateau(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2021 04
Research Field:
Publishing date:


Variations in floral traits of Rhododendron przewalskii with slope aspect in the southeastern Tibetan Plateau
HE Jiali1 2 ZHOU Tianyang3 SONG Yike2 4 ZHA Lin2 5 SHI Ning2 SHANG Hongli1? WU Yan2 NIYATI Naudiyal2 DU Wentao6 & WANG Jinniu2 6?
1 College of Life Science, Sichuan Normal University, Chengdu 610101, China 2 Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China 3 Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China 4 College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China 5 College of Forestry, Sichuan Agricultural University, Chengdu 611130, China 6 State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy Sciences, Lanzhou 730000, China
corolla tube pistil stigma aspect heterogeneity allometric growth trade-off adaptive strategy

The diverse phenotypes of floral traits are evolutionary outcomes of natural selection and adaptive responses to heterogeneous environments. This study aimed to understand plant fitness in alpine heterogeneous habitats and reproductive organ plasticity in terms of pollination biology. Rhododendron przewalskii is a typical alpine shrub on the south-eastern edge of the Tibetan Plateau. A comparative and correlational analysis of the floral traits of R. przewalskii growing on different aspects was performed. Our results showed that 1) the soil temperature and pH values at the eastern aspect were significantly greater (P = 0.02, P = 0.001), whereas the soil bulk density was significantly lower (P < 0.001), than those of the north-eastern aspect. Other soil factors showed no significant differences between the two slope aspects. 2) The flower size of R. przewalskii was significantly different in the two aspects. The flower size was greater at the east aspect (floral opening diameter: 22.74 ± 0.15 mm; corolla tube length: 19.86 ± 0.56 mm) than those at the northeast aspect (21.00 ± 0.12 mm and 21.00 ± 0.12 mm, respectively). The pistil length was also significantly larger in the eastern aspect than in the northeast. However, stigma exsertion presented a contradictory result. In addition, there was no significant difference in the size and shape of the stigma between the two aspects. Floral traits exhibited large variation between individuals and aspects. The coefficient of variation (CV) of stigma size was greater (29.13%) in the east, whereas the CV of stigma exsertion was larger (28.03%) in the northeast aspect. 3) Floral opening diameter and corolla tube length, pistil length and pedicel length, style length and pistil and pedicel lengths, and ovary length and pistil length were significantly positively correlated at both aspects (east: P < 0.001, P < 0.001, P < 0.01, P < 0.001, P < 0.001, respectively; northeast: P < 0.001, P < 0.001, P < 0.01, P < 0.001, P < 0.001, respectively). In addition, stigma size, style length, and pistil length had significant positive correlations with the pedicel length at the east aspect (P < 0.01, P < 0.001, P < 0.01, respectively), and at the northeast aspect, the stigma size was significantly positively correlated with the ovary length (P = 0.01), whereas it was significantly negatively correlated with the stigma shape (P = 0.02). 4) The floral opening diameter and the corolla tube length had an allometric growth relationship at the eastern aspect but an isometric growth relationship at the northeast aspect. Moreover, floral opening diameter tended to increase in the eastern aspect in terms of trade-offs between functional traits of pollination biology, whereas the flower preferred to regulate stigma exsertion at the northeast aspect for better reproduction efficiency. The study revealed that floral traits of R. przewalskii vary with changes in aspect, which enables them to avail higher reproductive opportunities in a heterogeneous alpine habitat. The trade-off between floral traits and their preferences in different aspects is a crucial evolutionary adaptation that ensures the survival of R. przewalskii in a heterogeneous alpine environment.


1 Plgliucci M, Murren CJ, Schlichting CD. Phenotypic plasticity and evolution by genetic assimilation [J]. J Exp Biol, 2006, 209 (12): 2362-2367
2 王姝, 周道玮. 植物表型可塑性研究进展[J]. 生态学报, 2017, 37 (24): 8161-8169 [Wang S, Zhou DW. Research on phenotypic plasticity in plants: an overview of history, current status, and development trends [J]. Acta Ecol Sin, 2017, 37 (24): 8161-8169]
3 Li YG, Liu XH, Ma JW, Zhang XM, Xu LA. Phenotypic variation in Phoebe bournei populations preserved in the primary distribution area [J]. J For Res, 2018, 29 (1): 35-44
4 黄双全. 花部特征演化的最有效传粉者原则: 证据与疑问[J]. 生命科学, 2014, 26 (2): 118-124 [Huang SQ. Most effective pollinator principle of floral evolution: evidence and query [J]. Life Sci, 2014, 26 (2): 118-124]
5 Mani S, Adrian GD, Prakash B, Martin B. Flower color and phylogeny along an altitudinal gradient in the Himalayas of Nepal [J]. J Ecol, 2014, 102: 126-135
6 Lázaro A, Totland ?. The influence of floral symmetry, dependence on pollinators and pollination generalization on flower size variation [J]. Ann Bot, 2014, 114: 157-165
7 Herrera J. Flower size variation in Rosmarinus officinalis: individuals, populations and habitats [J]. Ann Bot, 2005, 95: 431-437
8 Harder LD, Johnson SD. Darwin’s beautiful contrivances: Evolutionary and functional evidence for floral adaptation [J]. New Phytol, 2009, 183 (3): 530-545
9 Sletvold N, Grindeland JM, ?gren J. Pollinator-mediated selection on floral display, spur length and flowering phenology in the deceptive orchid Dactylorhiza lapponica [J]. New Phytol, 2010, 188 (2): 385-392
10 Alexandersson R, Johnson SD. Pollinator-mediated selection on flower-tube length in a hawkmoth-pollinated Gladiolus (Iridaceae) [J]. Proc R Soc B-Biol Sci, 2002, 269 (1491): 631-636
11 Bloch D, Erhardt A. Selection toward shorter flowers by butterflies whose probosces are shorter than floral tubes [J]. Ecology, 2008, 89: 2453-2460
12 Dudash MR, Hassler C, Stevens PM, Fenster CB. Experimental floral and inflorescence trait manipulations affect pollinator preference and function in a hummingbird-pollinated plant [J]. Am J Bot, 2011, 98 (2): 275-282
13 Warren J, Mackenzie S. Why are all color combinations not equally represented as flower-color polymorphisms? [J]. New Phytol, 2001, 151 (1): 237-241
14 Dick CA, Buenrostro J, Butler T, Carlson ML, Kliebenstein DJ, Whittall JB. Arctic mustard flower color polymorphism controlled by petal-specific downregulation at the threshold of the anthocyanin biosynthetic pathway [J]. PLoS ONE, 2011, 6: e18230
15 蒋裕良, 白坤栋, 郭屹立, 王斌, 李冬兴, 李先琨, 刘志尚. 北热带喀斯特森林木本植物花性状及其生境分异[J]. 生物多样性, 2016, 24 (2): 28-36 [Jiang YL, Bai KD, Guo YL, Wang B, Li DX, Li XK, Liu ZS. Floral traits of woody plants and their habitat differentiations in a northern tropical karst forest [J]. Biol Sci, 2016, 24 (2): 28-36]
16 苏梅, 齐威, 阳敏, 杜国祯. 青藏高原东部大通翠雀花的花特征和繁殖分配的海拔差异[J]. 兰州大学学报(自然科学版), 2009, 45 (2): 61-65 [Su M, Qi W, Yang M, Du GZ. Altitudinal differences in flower traits and reproductive allocation of Delphinium pylzowii(Ranunculaceae) at east Qinhai Tibetan Plateau [J]. J Lanzhou Univ (Nat Sci). 2009, 45 (2): 61-65]
17 Dafni A. Pollination Ecology [M]. New York: Oxford university Press, 1992: 59-89
18 Sigrist MR, Sazima M. Pollination and reproductiveriology of twelve species of neotropical malpighiaceae: stigma morphology and its implications for the breeding system [J]. Ann Bot, 2004, 94 (1): 33-41
19 李晶, 金樑, 邓志刚, 杨龙, 王文斌, 王晓娟. 被子植物花粉和雌蕊互作的分子基础[J]. 草业科学, 2014, 31 (1): 161-167 [Li J, Jin L, Deng ZG. Molecular basis of interaction between pollen and pistil in angiosperms [J]. Pratacult Sci, 2014, 31 (1): 161-167]
20 王其刚, 张颢, 蹇洪英, 刘红明, 晏慧君, 唐开学. 月季柱头形态发育进程与可授性[J]. 西北农业学报, 2012, 21 (5): 169-173 [Wang QG, Zhang H, Jian HY, Liu HM, Yan HJ, Tang KX. Stigma receptivity and shape development of rose [J]. Acta Agric Bor-occid Sin, 2012, 21 (5): 169-173]
21 张潇, 廖明安, 何静, 刘春阳, 马倩倩, 杨代宇, 卢春友, 周廷国, 戴盛根. ‘川早枇杷’头花柱头可授性及花粉活力与花粉管生长的研究[J]. 西北植物学报, 2015, 35 (7): 1349-1355 [Zhang X, Liao MA, He J, Liu CY, Ma QQ, Yang DY, Lu CY, Zhou TG, Dai SY. Studies on stigma receptivity and pollen viability and pollen tube growth of ‘Chuanzao loquat’ in the first florescence [J]. Acta Bot Bor Occid Sin, 2015, 35 (7): 1349-1355]
22 高文杰, 王欢, 王想, 王霁佳, 宫明雪, 崔兰明, 何淼. 野生绵枣儿的花粉活力与柱头可授性[J]. 东北林业大学学报, 2017, 45 (9): 45-48 [Gao WJ, Wang H, Wang X, Wang QJ, Gong MX, Cui LM, He M. Pollen viability and stigma receptivity of Scilla scilloides [J]. J NE For Univ, 2017. 45 (9): 45-48]
23 常学礼, 吕世海, 冯朝阳, 叶生星. 地形对草甸草原植被生产力分布格局的影响[J]. 生态学报, 2015, 35 (10): 3339-3348 [Chang XL, Lü SH, Feng ZY, Ye SX. Impact of topography on the spatial distribution pattern of net primary productivity in a meadow [J]. Acta Ecol Sin, 2015, 35 (10): 3339-3348]
24 党晶晶, 赵成章, 李钰. 高寒草地甘肃臭草茎-叶性状的坡度差异性[J]. 植物生态学报, 2014, 38 (12): 1307-1314 [Dang JJ, Zhao CZ, Li Y, Hou ZJ, Dong XG. Relationship between leaf traits of Melica przewalskyi and slope aspects in alpine grassland of Qilian Mountains, China [J]. Chin J Plant Ecol, 2015, 39 (1): 23-31]
25 Chen M, Zhao XY, Zuo XA. Floral traits and pollination system of Zygophyllum xanthoxylum in the managed and wild populationsin an arid region of Northwest China [J]. J Arid Land, 2015, 7 (4): 488-500
26 Mariana PB. Relationships between leaf deciduousness and flowering traits of woody species in the Brazilian neotropical savanna [J]. Flora Morphol Distr Funct Ecol Plants, 2014, 209: 73-80
27 周天阳, 高景, 贺俊东, 薛晶月, 孙建, 王金牛, 徐波, 谢雨, 吴彦. 高山草地环山样带异质坡向上3种植物的株高、叶片性状与生物量分配[J]. 应用与环境生物学报, 2018, 24 (3): 425-433 [Zhou TY, Gao J, He JD, Xue JY, Sun J, Wang JN, Xu B, Xie Y, Wu Y. Plant height, leaf traits, and biomass allocation of three species at heterogeneous slope aspects along a transect in an alpine meadow [J]. Chin J Appl Environ Biol, 2018, 24 (3): 425-433]
28 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1996 [Delectis Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae Edita. Flora Reipublicae Popularis Sinicae [M].Beijing: Science Press, 1994: 212]
29 刘莉娟, 潘金渊, 岳玉兰, 胡芬娟. 达坂山陇蜀杜鹃叶中几种主要成分含量与季节的关系[J]. 中国中药杂志, 1986, 11 (1): 41-43 [Liu LJ, Pan JY, Yue YL, Hu FJ. The relationship between the content of several main components in the leaves of Rhododendron fortunei in Daban Mountain and the season [J]. China J Chin Mat Med, 1986, 11 (1): 41-43]
30 曹文侠. 东祁连山高寒生态系统杜鹃花属植物适应对策的研究[D]. 兰州: 西北师范大学, 2001 [Cao C. Ecological adaptive strategy of genus Rhododendron L. in eastern Qilian Mountains alpine ecosystem [D]. Lanzhou: Northwest Normal University, 2001]
31 李小龙. 祁连山4种杜鹃克隆生长特性及其年轮宽度对气候因子的响应[D]. 兰州: 甘肃农业大学, 2017 [Li XL. The response of four Rhododendrons clone characteristics and annual ring width on different climatic factor in Qilian Mountains [D]. Lanzhou: Gansu Agricultural University, 2017]
32 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40 (8): 775-787 [Gao J, Wang JN, Xu B, Xie Y, He JD, Wu Y. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow [J]. Chin J Plant Ecol, 2016, 40 (8): 775-787]
33 王丽华, 高景, 王金牛, 徐波, 孙建, 朱忠福, 许积层, 吴彦. 高山草地长花马先蒿的性状和生物量分配对坡向的适应[J]. 应用与环境生物学报, 2017, 23 (4): 648-657 [Wang LH, Gao J, Wang JN, Xu B, Sun J, Zhu ZF, X u JC, Wu Y. Adaptation of traits and biomass allocation of Pedicularis longiflora to different slope aspects in an alpine meadow [J]. Chin J Appl Environ Biol, 2017, 23 (4): 648-657]
34 关文彬, 吴建安, 梁广林, 王棒, 马克明, 刘国华, 汪西林. 岷江源区植被分类及其主要类型[C]//全国生物多样性保护与持续利用研讨会, 杭州, 2002: 288-299 [Guan WB, Wu JA, Liang GL, Wang B, Ma KM, Liu GH, Wang XL. Vegetation classification and the main types in the Header area of the Minjiang river [C]//National Seminar on Biodiversity Conservation and Sustainable Use, Hangzhou, 2002: 288-299]
35 杨冬梅, 占峰, 张宏伟. 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系[J]. 植物生态学报, 2012, 36 (4): 281-291 [Yang DM, Zhan F, Zhang HW. Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China [J]. Chin J Plant Ecol, 2012, 36 (4): 281-291]
36 王乾. 岷江源区种子植物图谱[M]. 成都: 四川大学出版社, 2016: 4 [Wang Q. Atlas of Seed Plants in the Source Region of the Minjiang River [M]. Chengdu: Sichuan University Press, 2016: 4]
37 Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil-nitrogen - a rapid direct extraction method to measure microbial biomass nitrogen in soil [J]. Soil Biol Biochem, 1985, 17 (6): 837-842
38 Allen SE. Chemical Analysis of Ecological Material [M]. 2nd ed. UK: Blackwell, Oxford, 1989
39 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000 [Bao SD. Soil and Agricultural Chemistry Analysis [M] 3rd ed. Beijing: China Agriculture Press, 2000]
40 Bradford JB, D’Amato AW. Recognizing trade-offs in multi-objective land management [J]. Front Ecol Environ, 2012, 10 (4): 210-216
41 Sun J, Wang HM. Soil nitrogen and carbon determine the trade-off of the above- and below-ground biomass across alpine grasslands, Tibetan Plateau [J]. Ecol Ind, 2016, 60: 1070-1076
42 Niklas KJ, Enquist BJ. Invariant scaling relationships for interspecific plant biomass production rates and body size [J]. PNAS, 2001, 98 (5): 2922-2927
43 Niklas KJ. Modelling below- and above-ground biomass for non-woody and woody plants [J]. Ann Bot, 2005, 95 (2): 315-321
44 Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry [J]. Biol Rev Cambr Philos Soc, 2006, 81 (2): 259-291
45 Bennett A. The origin of species by means of natural selection; or the preservation of favoured races in the struggle for life [J]. Nature ,1872, 5: 318-319
46 Yan XB, Zhou H, Wang K Guo YX. Morphological diversities of the different species of Elymus spp. and their principal component analysis [J]. Acta Agres Sin, 2005, 13 (2): 111-116
47 Ilhan D, Li XH, Brummer EC, ?akiro?lu M. Genetic diversity and polulation structure of tetraploid accessions of the Medicago sativa-fatcata complex [J]. Crop Sci, 2016, 56 (3):1146-1156
48 Russel AL, Golden RE, Leonard A S, Papaj DR. Bees learn preferences for plant species that offer only pollen as a reward [J]. Behav Ecol, 2016, 27 (3): 731-774
49 Huang ZH, Song YP, Huang SQ. Evidence for passerine bird pollination in Rhododendron species [J]. AoB Plants, 2017, 9: plx062
50 孙淑范, 骆望龙, 张勃. 毛地黄鼠尾草花部性状的变异及其对传粉昆虫访花偏好的影响[J]. 甘肃农业大学学报,2019, 54 (1): 189-194 [Sun SF, Luo WL, Zhang B. Variation in floral traits and its manipulation on foraging behaviors of pollinators in Salvia digitaloides [J]. J Gansu Agric Univ, 2019, 54 (1): 189-194]
51 Galen C. Why do flowers vary? The functional ecology of variation in flower size and form within natural plant populations [J]. Bioscience, 1999, 49: 631-640
52 王丽娟, 刘林德, 张莉, 王艳杰, 连玮, 姜中武, 张福兴. 烟台甜樱桃柱头的可授性, 形态特征与坐果率[J]. 植物学报, 2011, 46 (1): 44-49 [Wang LJ, Liu LD, Zhang L, Wang LJ, Lian W, Jiang ZW, Zhang FX. Stigma receptivity, stigma morphology and fruit set of Yantai sweet cherry (Cerasus avium) [J]. Chin Bull Bot, 2011, 46 (1): 44-49]
53 赵同欣, 刘林德, 张莉, 王艳杰, 贾兴军. 南蛇藤花粉和柱头的生物学特性研究[J]. 植物研究, 2014, 34 (3): 309-316 [Zhao TX, Liu LD, Zhang L, Wang YJ, Jia XJ. Bionomics of pollen and stigma of Celastrus orbiculatus Thunb [J]. Bull Bot Res, 2014, 34 (3): 309-316]
54 邵凤侠, 王森, 陈建华, 陈娟, 洪荣艳, 唐艳, 王佳. ‘中秋酥脆枣’柱头形态发育进程与可授性[J]. 园艺学报, 2019, 46 (12): 2309-2322 [Shao FX, Wang S, Chen JH, Chen J, Hong RY, Tang Y, Wang J. Stigma shape development and receptivity of ‘Zhongqiu Sucui’ Chinese jujube [J]. Acta Horticul Sin, 2019, 46 (12): 2309-2322]
55 Zeneli G, Kola H, Dida M. Phenotypic variation in native walnut populations of northern Albania [J]. Sci Horticul, 2005, 105 (1): 91-100
56 Cresswell JE. Stabilizing selection and the structural variability of flowers within species [J]. Ann Bot, 1998, 81 (4): 467-473


Last Update: 2021-08-25