|Table of Contents|

Cloning and expression analysis of two sugar transporter SWEET genes in plum (Prunus salicina)(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2021 05
Research Field:
Publishing date:


Cloning and expression analysis of two sugar transporter SWEET genes in plum (Prunus salicina)
YU Xinmiao1 SHI Meng1 FANG Ting1 & CHEN Faxing1 2?
1 College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China 2 Institute of Subtropical Fruits, Fujian Agriculture and Forestry University, Fuzhou 350002, China
‘Huangguan’ (Prunus salicina) SWEET gene sequence analysis gene expression sugar content

SWEET transporters play a crucial role in plant growth, development, and resistance to biotic and abiotic stresses. To understand the sequence characteristics of the SWEET genes and their expression patterns during fruit development stages in plum (Prunus salicina), we amplified the full-length cDNA and DNA sequences of two SWEET genes from the ‘Huangguan’ genome. Systematic bioinformatics analysis was conducted, and their expression patterns were investigated by qRT-PCR at different developmental stages. Furthermore, the correlation between the two SWEET genes and sugar content in the fruit was analyzed. The results show that two plum SWEET genes, PsSWEET2a-like and PsSWEET17-like, contained the full-length cDNA sequences of 627 bp and 597 bp, respectively. Both their encoding proteins belong to the SWEET family with subgroups I and IV, respectively, which are hydrophobic basic proteins containing typical Mtn3/saliva domains. The PsSWEET2a-like gene was downregulated, while PsSWEET17-like was upregulated during fruit development. Correlation analysis showed that PsSWEET17-like was significantly positively correlated with fructose and glucose content; however, it was significantly negatively correlated with sucrose during fruit development. PsSWEET2a-like was not correlated with the above three kinds of sugars and was significantly expressed at the late stages of fruit development. It may play an important role in accumulating glucose and fructose during fruit development. PsSWEET2a-like has no significant role in regulating sugar transport in fruit but may be involved in other biological processes in plants.


1 Naula CM, Logan FJ, Wong PE, Barrett MP, Burchmore RJ. A glucose transporter can mediate ribose uptake: definition of residues that confer substrate specificity in a sugar transporter [J]. J Biol Chem, 2011, 286 (10): 8708-8708
2 Yuan M, Zhao J, Huang R, Li X, Xiao J, Wang S. Rice MtN3/saliva/SWEET gene family: evolution, expression profiling, and sugar transport [J]. J Integr Plant Biol, 2014, 56 (6): 559-570
3 Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B. Sugar transporters for intercellular exchange and nutrition of pathogens [J]. Nature, 2010, 468 (7323): 527-532
4 Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC, Hou BH, Frommer WB. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family [J]. PNAS, 2013, 110 (39): E3685-E3694
5 Baker RF, Leach KA, Braun DM. SWEET as sugar: new sucrose effluxers in plants [J]. Mol Plant, 2012, 5 (4): 766-768
6 Redondo-Nieto M, Maunoury N, Mergaert P, Kondorosi E, Bonilla I, Bola?±Os LJNP. Boron and calcium induce major changes in gene expression during legume nodule organogenesis. Does boron have a role in signalling? [J]. New Phytol, 2012, 195 (1): 14-19
7 孔令广. xa13基因在水稻—白叶枯病菌互作过程中的功能研究[D]. 泰安: 山东农业大学, 2013 [Kong LG, Functional analysis of xal3 in rice-xoo interaction [D]. Tai’an: Shandong Agricultural University, 2013]
8 Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9 [J]. Nature, 2014, 508 (7497): 546-549
9 Seo PJ, Park JM, Kang SK, Kim SG, Park CM. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity [J]. Planta, 2011, 233 (1): 189-200
10 Gamas P, Niebel FDC, Lescure N, Cullimore J. Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development [J]. Mol Plant-Microbe Interact, 1996, 9 (4): 233-242
11 Klemens PAW, Patzke K, Deitmer J, Spinner L, Hir RL, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus HE. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis [J]. Plant Physiol, 2013, 163 (3): 1338-1352
12 Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, Mestre PJJoEB. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea [J]. J Exp Bot, 2014, 65 (22): 6589-6601
13 Chen M, Jiang Q, Yin XR, Lin Q, Chen JY, Allan AC, Xu CJ, Chen KS. Effect of hot air treatment on organic acid- and sugar-metabolism in Ponkan (Citrus reticulata) fruit [J]. Sci Hort-Amst, 2012, 147 (none): 118-125
14 郑乾明. 甜橙糖转运子基因分离及其在果实糖积累中的功能研究[D]. 武汉: 华中农业大学, 2015 [Zheng QM. Isolation and functional characterization of sugar transporter genes during fruit sugar accumulation of sweet orange [D]. Wuhan: Huazhong Agricultural University, 2015]
15 Zhen Q, Fang T, Peng Q, Liao L, Zhao L, Owiti A, Han YJHR. Developing gene-tagged molecular markers for evaluation of genetic association of apple SWEET genes with fruit sugar accumulation [J]. Hortic Res, 2018, 5 (1): 14
16 Castro P, Lewers KSJMB. Identification of quantitative trait loci (QTL) for fruit-quality traits and number of weeks of flowering in the cultivated strawberry [J]. Mol Breed, 2016, 36 (10): 138
17 Sedov EN, Makarkina MA. Domination and transgressions in apple breeding for increased contents of soluble dry substances and sugar in fruit [J]. Russ Agric Sci, 2017, 43 (6): 466-471
18 Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport [J]. Science, 2011, 335 (6065): 207-211
19 冯超阳. 番茄果实糖代谢中关键SlSWEETs基因的鉴定及其功能验证[D]. 沈阳: 沈阳农业大学, 2018 [Feng CY. Effect of slsweets on sugar metabolism of tomato fruits and functional verification of four SlSWEETs genes [D]. Shenyang: Shenyang Agricultural University, 2018]
20 韩佳轩, 姜晶. 拟南芥、水稻和番茄SWEET/MtN3/saliva基因家族的分析[J]. 分子植物育种, 2015, 13 (3): 581-588 [Han J X, Jiang J. Genome-wide analysis of SWEET gene family in Arabidopsis thaliana, Oryza sativa and Lycopersicum esculentum [J]. Mol Plant Breed. 2015, 13 (3): 581-588]
21 Feng CY, Han JX, Han XX, Jiang J. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato [J]. Gene, 2015, 573 (2): 261-272
22 Miao H, Sun P, Liu Q, Miao Y, Liu J, Zhang K, Hu W, Zhang J, Wang J, Wang Z. Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana [J]. Sci Rep, 2017, 7 (1): 3536
23 Wu Y, Wang Y, Shan Y, Qin QJTG. Characterization of SWEET family members from loquat and their responses to exogenous induction [J]. Tree Genet Genomes, 2017, 13 (6): 123
24 Xie H, Wang D, Qin Y, Ma A, Fu J, Qin Y, Hu G, Zhao J. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development [J]. BMC Plant Biol, 2019, 19 (1): 1-13
25 闫玖英, 马长青, 常博, 范献光, 李征, 杨亚州, 赵政阳. 改良CTAB法用于苹果果实基因组DNA的提取[J]. 分子植物育种, 2017, (9): 228-233 [Yan JY, Ma CQ, Chang B, Fan XG, Li Z, Yang YZ, Zhao ZY. A modified CTAB method for genomic DNA extraction from apple fruit [J]. Mol Plant Breed, 2017, (9): 228-233]
26 You Y, Zhang L, Li P, Yang C, Ma F. Selection of reliable reference genes for quantitative real-time PCR analysis in plum (Prunus salicina Lindl.) under different postharvest treatments [J]. Sci Hort-Amst, 2016, 210: 285-293
27 虢成莹. 菠萝SWEET基因家族的进化和功能分析[D]. 泰安: 山东农业大学, 2018 [Guo CY. The evolution and function of the pineapple SWEET genes family [D]. Tai’an: Shandong Agricultural University, 2018]
28 胡伟长. 甘蔗SWEET基因家族的演化与功能分析[D]. 福州: 福建农林大学, 2017 [Hu WC. The evolution and function of SWEET genes in saccharum [D]. Fuzhou: Fujian Agriculture and Forestry University, 2017]
29 王梓然, 匡柳青, 陈尚武, 马会勤. 在葡萄果实发育Ⅰ、Ⅲ期差异表达的SWEET基因家族成员的生物信息学分析[J]. 中国农业大学学报, 2016, 21 (11): 24-33 [Wang ZR, Kuang LQ, Chen SW, Ma HQ. Bioinformatics analysis of differentially expressed SWEET genes between grape berry development stage Ⅰ and Ⅲ [J]. J Chin Agric Univ, 2016, 21 (11): 24-33]
30 薛蓓蓓, 覃丽芳, 董明右, 李有志, 樊宪伟. 木薯SWEETs基因家族生物信息学及表达特性研究[J]. 基因组学与应用生物学, 2019, 38 (1): 270-278 [Xue BB, Qin LF, Dong MY, Li YZ, Fan XW. Bioinformatics analysis and expressional characteristics of cassava SWEETs gene family [J]. Genomics Appl Biol, 2019, 38 (1): 270-278]
31 陈慧敏, 李威, 马雄风, 裴小雨, 刘艳改, 贺昆仑, 张飞, 张文生, 王振玉, 杨代刚, 胡守林. 雷蒙德氏棉SWEET基因家族的全基因组鉴定和进化分析[J]. 中国农学通报, 2017, 33 (25): 13-21 [Chen HM, Li W, Ma XF, Pei XY, Liu YG, He KL, Zhang F, Zhang WS, Wang ZY, Yang DG, Hu SL. Genome-wide identification and phylogenetic analysis of SWEET gene family in Gossypium raimondii [J]. Chin Agric Sci Bull, 2017, 33 (25): 13-21]
32 辛红佳. 植物SWEET基因家族Clade Ⅰ基因功能研究[D]. 北京: 中国农业科学院, 2018 [Xin HJ. Studies on the plant SWEET gene family Clade Ⅰ gene’s function [D]. Beijing: Chinese Academy of Agricultural Sciences. 2018]
33 Chen HY, Huh JH, Yu YC, Li HH, Chen LQ, Tholl D, Frommer WB, Guo WJ. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection [J]. Plant J Cell Mol Biol, 2011, 2 (3): 1046-1058
34 Fabien C, Magali B, Fanny C, Patrick AW. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis [J]. Curr Biol, 2013, 23 (8): 697-702
35 Zhou A, Hongping M, Shuang F, Shufang G, Jingang W. DsSWEET17, a tonoplast-localized sugar transporter from Dianthus spiculifolius, affects sugar metabolism and confers multiple stress tolerance in Arabidopsis [J]. Int J Mol Sci, 2018, 19 (6): 1564
36 杨官显, 许海峰, 张静, 王楠, 房鸿成, 邹琦, 王意程, 姜生辉, 陈学森. 苹果糖转运蛋白基因MdSWEET17的功能鉴定 [J]. 植物生理学报, 2018, 54 (11): 1737-1745 [Yang GX, Xu HF, Zhang J, Wang N, Fang HC, Zou Q, Wang YC, Jiang SH, Chen XS. Functional identification of a sugar transporter gene MdSWEET17 in apple [J]. Plant Physiol J, 2018, 54 (11): 1737-1745]
37 Guo WJ, Nagy R, Chen HY, Pfrunder S, Yu YC, Santelia D, Frommer WB, Martinoia E. SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves [J]. Plant Physiol, 2014, 164 (2): 777-789
38 Gonzalez M, Salazar E, Cabrera S, Olea P, Carrasco B. Analysis of anthocyanin biosynthesis genes expression profiles in contrasting cultivars of Japanese plum (Prunus salicina L.) during fruit development [J]. Gene Expr Patterns, 2016, 21 (1): 54-62


Last Update: 2021-10-25