|Table of Contents|

The response and toxicity attenuation role of arbuscular mycorrhizal fungi to environmental nanomaterials(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2020 05
Research Field:
Publishing date:


The response and toxicity attenuation role of arbuscular mycorrhizal fungi to environmental nanomaterials
SUN Dongnian1 2 HU Junli1 3? BAI Jianfeng2 & LIN Xiangui1
1 State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China 2 Shanghai Collaborative Innovation Centre for WEEE Recycling, WEEE Research Centre of Shanghai Polytechnic University, Shanghai 201209, China 3 University of Chinese Academy of Sciences, Beijing 100049, China
environmental nanomaterials arbuscular mycorrhizal fungi community structure diversity soil environmental behavior plant toxicity

Environmental nanomaterials (NMs) have been reported to have positive effects in fields such as environmental governance and agricultural production but also pose potential hazards in ecosystems that cannot be ignored. Arbuscular mycorrhizal (AM) fungi can promote plant nutrient absorption, improve plant resistance to stress, and reduce the toxicity of environmental NMs. Recently, it has become popular to explore the response and toxicity attenuation role of AM fungi to environmental NMs. Based on a review of the relevant literature, environmental NMs were found to have differential effects on community structure, diversity, growth, and colonization of soil AM fungi. This is due to differences in material properties, environmental concentrations, and soil properties, among other ecosystem components. Meanwhile, AM fungi can regulate the bio-environmental effects of NMs by fixing nanoparticles, improving the rhizosphere environment, regulating the nutritional and water statuses of host plants, reducing the absorption and transport of NMs, and enhancing the defense of plant systems. These measures can lessen the hazards caused by NMs after entering the environment. Finally, based on the status of current research, key points that should be given attention in future research on the interaction between AM fungi and NMs were proposed. Specifically, they are as follows: (1) Revealing the response mechanisms of AM fungi to NMs through new methods and identifying species with high tolerance to NMs. (2) Strengthening the research on soil environmental behavior and plant toxicity of NMs under complex systems. (3) Maximizing the regulation function of AM fungi. These efforts may provide a theoretical basis for the scientific application and safe management of environmental NMs.


1 曹明礼, 曹明贺. 非金属纳米矿物材料[M]. 北京: 化学工业出版社, 2006 [Cao ML, Cao MH. Non-metallic Nano Mineral Materials [M]. Beijing: Chemical Industry Press, 2006]
2 Corsi I, Winther-Nielsen M, Sethi R, Punta C, Della Torre C, Libralato G, Lofrano G, Sabatini L, Aiello M, Fiordi L, Cinuzzi F, Caneschi A, Pellegrini D, Buttino I. Ecofriendly nanotechnologies and nanomaterials for environmental applications: key issue and consensus recommendations for sustainable and ecosafe nanoremediation [J]. Ecotoxicol Environ Saf, 2018, 154: 237-244
3 杨聪, 陈胜伦, 刘豫, 金卓君, 张春来, 徐卫红. 纳米氢氧化镁、黑麦草套种和丛枝菌根对萝卜Cd含量和土壤Cd化学形态及微生物数量的影响[J]. 农学学报, 2019, 9 (7): 37-43 [Yang C, Chen SL, Liu Y, Jin ZJ, Zhang CL, Xu WH. Effects of nano-magnesium hydroxide, ryegrass and arbuscular mycorrhiza on radish Cd concentration and soil Cd chemical forms and microbial populations [J]. J Agric, 2019, 9 (7): 37-43]
4 Ingle AP, Seabra AB, Duran N, Rai M. Nanoremediation: a new and emerging technology for the removal of toxic contaminant from environment [C]//Das S. Microbial Biodegradation and Bioremediation. India: Elsevier Inc, 2014: 233-250
5 Wang Y, Zhou D, Wang Y, Wang L, Cang L. Automatic pH control system enhances the dichlorination of 2,4,4′-trichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Fe0 and Pd/Fe0 [J]. Environ Sci Pollut Res, 2012, 19: 448-457
6 Fraceto LF, Grillo R, de Medeiros GA, Scognamiglio V, Rea G, Bartolucci C. Nanotechnology in agriculture: which innovation potential does it have? [J]. Front Environ Sci, 2016, 4: 20
7 El-Ramady H, Alshaal T, Abowalu M, Abdalla N, Taha Hs, Al-Saeedi AH, Shalaby T, Amer M, Fari M, Domokos-Szabolcsy E, Sztrik A, Prokisch J, Selmar D, Pilon Smits EAH, Pilon M. Nanoremediation for sustainable crop production [C]//Ranjan S, Dasgupta N, Lichtfouse E. Nanoscience in Food and Agriculture 5, Sustainable Agriculture Reviews 26. Switzerland: Springer Cham, 2017: 335-363
8 王小燕, 马国辉, 狄浩, 田小海, 王燚. 纳米增效尿素对水稻产量及氮肥农学利用率的影响[J]. 植物营养与肥料学报, 2010, 16 (6): 1479-1485 [Wang XY, Ma GH, Di H, Tian XH, Wang Y. Effects of NMUrea on rice yield and agronomic nitrogen efficiency [J]. Plant Nutr Fert Sci, 2010, 16 (6): 1479-1485]
9 Lei C, Sun Y, Tsang DCW, Lin D. Environmental transformations and ecological effects of iron-based nanoparticles [J]. Environ Pollut, 2018, 232: 10-30
10 Ma H, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles–a review [J]. Environ Pollut, 2013, 172: 76-85
11 Ma X, Wang C. Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems [J]. Environ Eng Sci, 2010, 27 (11): 989-992
12 Dinesh R, Anandaraj M, Srinivasan V, Hamza S. Engineered nanoparticles in the soil and their potential implications to microbial activity [J]. Geoderma, 2012, 173: 19-27
13 Lazareva A, Keller AA. Estimating potential life cycle releases of engineered nanomaterials from wastewater treatment plants [J]. ACS Sustain Chem Eng, 2014, 2 (7): 1656-1665
14 郭凯璇, 冀文文, 尚中博, 种瑞峰, 李德亮, 丁颖. 纳米材料修复铬污染土壤的研究进展[J]. 河南大学学报(自然科学版), 2016, 46 (6): 692-701 [Guo KX, Ji WW, Shang ZB, Zhong RF, Li DL, Ding Y. Research progress on remediation of hexavalent chromium contaminated soil by nano-materials [J]. J Henan Univ (Nat Sci), 2016, 46 (6): 692-701]
15 Liu J, Chen T, Qi Z, Yan J, Buekens A, Li X. Thermal desorption of PCBs from contaminated soil using nano zerovalent iron [J]. Environ Sci Pollut Res, 2014, 21 (22): 12739-12746
16 章军, 杨军, 朱心强. 纳米材料的环境和生态毒理学研究进展[J]. 生态毒理学报, 2006, 1 (4): 350-356 [Zhang J, Yang J, Zhu XQ. The advancement of environmental and ecotoxicological research of nanomaterials [J]. Asian J Ecotoxicol, 2006, 1 (4): 350-356]
17 汪冰, 丰伟悦, 赵宇亮, 刑更妹, 柴之芳, 王海芳. 纳米材料生物效应及其毒理学研究进展[J]. 中国科学(B辑化学), 2005, 35 (1): 1-10 [Wang B, Feng WY, Zhao YL, Xing GM, Chai ZF, Wang HF. Research progress on biological effects and toxicology of nanomaterials [J]. Sci China (Ser B), 2005, 35 (1): 1-10]
18 Gottschalk F, Sonderer T, Scholz RW, Nowack B. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions [J]. Environ Sci Technol, 2009, 43 (24): 9216-9222
19 林先贵, 胡君利, 戴珏, 王发园, 冯有智. 丛枝菌根真菌群落结构与多样性研究方法概述及实例比较[J]. 应用与环境生物学报, 2017, 23 (2): 343-350 [Lin XG, Hu JL, Dai J, Wang FY, Feng YZ. Overview and comparison of research methods for determining the community structure and diversity of arbuscular mycorrhizal fungi [J]. Chin J Appl Environ Biol, 2017, 23 (2): 343-350]
20 Zhang Y, Hu J, Bai J, Wang J, Yin R, Wang J, Lin X. Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site [J]. Sci Total Environ, 2018, 628: 282-290
21 杨振亚, 阙弘, 朱雪竹, 周紫艳, 陈爽, 凌婉婷. 几种丛枝菌根真菌对菲污染土壤中球囊霉素含量的影响[J]. 农业环境科学学报, 2016, 35 (7): 1388-1343 [Yang ZY, Que H, Zhu XZ, Zhou ZY, Chen S, Ling WT. Impacts of arbuscular mycorrhizal fungi on glomalin content in soils contaminated with phenanthrene [J]. J Agro-Environ Sci, 2016, 35 (7): 1338-1343]
22 Petipas RH, Gonzalez JB, Palmer TM, Brody AK. Habitat-specific AMF symbioses enhance drought tolerance of a native Kenyan grass [J]. Actaoecol, 2017, 78: 71-78
23 王卫中. 丛枝菌根影响纳米氧化锌和纳米银对玉米的生物效应[D]. 洛阳: 河南科技大学, 2014 [Wang WZ. Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO and nano-Ag on maize [D]. Luoyang: Henan University of Science and Technology, 2014]
24 Ingle A, Rathod D, Varma A, Rai M. Understanding the mycorrhiza-nanoparticles interaction [C]//Varma A, Prasad R, Tuteja N. Mycorrhiza-Eco-Physiology, Secondary Metabolites, Nanomaterials. Switzerland: Springer Cham, 2017: 311-324
25 景新新, 苏志忠, 邢红恩, 王发园, 石兆勇, 刘雪琴. 不同磷水平下丛枝菌根真菌对纳米氧化锌生物效应的影响[J]. 环境科学, 2016, 37 (8): 3208-3215 [Jing XX, Su ZZ, Xing HE, Wang FY, Shi ZY, Liu XQ. Biological effects of ZnO nanoparticles as influenced by arbuscular mycorrhizal inoculation and phosphorus fertilization [J]. Chin J Environ Sci, 2016, 37 (8): 3208-3215]
26 王丽华. 纳米氧化锌和纳米银对丛枝菌根的毒性效应[D]. 洛阳: 河南科技大学, 2014 [Wang LH. Toxic effects of nano-ZnO and nano silver on arbuscular mycorrhizae [D]. Luoyang: Henan University of Science and Technology, 2014]
27 Tian H, Kah M, Kariman K. Are nanoparticles a threat to mycorrhizal and rhizobial symbioses? A critical review [J]. Front Microbiol, 2019, 10: 1660
28 向丹, 徐天乐, 李欢, 陈保冬. 丛枝菌根真菌的生态分布及其影响因子研究进展[J]. 生态学报, 2017, 37 (11): 3597-3606 [Xiang D, Xu TL, Li H, Chen BD. Ecological distribution of arbuscular mycorrhizal fungi and the influencing factors [J]. Acta Ecol Sin, 2017, 37 (11): 3597-3606]
29 Moll J, Gogos A, Bucheli TD, Widmer F, van der Heijden MG. Effect of nanoparticles on red clover and its symbiotic microorganisms [J]. J Nanobiotechnol, 2016, 14 (1): 36
30 Moll J, Klingenfuss F, Widmer F, Gogos A, Bucheli TD, Hartmann M, van der Heijden MGA. Effects of titanium dioxide nanoparticles on soil microbial communities and wheat biomass [J]. Soil Biol Biochem, 2017, 111: 85-93
31 Klingenfuss F. Testing of TiO2 nanoparticles on wheat and microorganisms in a soil microcosm [D]. Gothenburg: University of Gothenburg, 2014
32 Mokarram-Kashtiban S, Hosseini SM, Tabari Kouchaksaraei M, Younesi H. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response [J]. Environ Sci Pollut Res, 2019, 26 (11): 10776-10789
33 李帅, 刘雪琴, 王发园, 苗艳芳. 纳米氧化锌, 硫酸锌和AM真菌对玉米生长的影响[J]. 环境科学, 2015, 36 (12): 4615-4622 [Li S, Liu XQ, Wang FY, Miao YF. Effects of ZnO nanoparticles, ZnSO4 and arbuscular mycorrhizal fungus on the growth of maize [J]. Environ Sci, 2015, 36 (12): 4615-4622]
34 Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X. Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants–a soil microcosm experiment [J]. Chemosphere, 2016, 147: 88-97
35 Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS. Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance [J]. Biol Fertil Soils, 2014, 50 (7): 1169-1173
36 Gatahi DM, Wanyika HN, Kavoo AM, Kihurani AW, Ateka EM. Enhancement of bacterial wilt resistance and rhizosphere health in tomato using bionanocomposites [J]. Int J Hort Sci Technol, 2016, 3 (2): 129-144
37 Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadhyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL. ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate [J]. Environ Sci Proc Impacts, 2013, 15 (1): 260-266
38 Priester JH, Ge Y, Mielke RE, Horst AM, Moritz SC, Espinosa K, Gelb J, Walker SL, Nisbet RM, An YJ, Schimel JP, Palmer RG, Hernandez-Viezcas JA, Zhao L, Gardea-Torresdey JL, Holden PA. Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption [J]. Proc Natl Acad Sci, 2012, 109 (37): E2451-E2456
39 Pawlett M, Ritz K, Dorey RA, Rocks S, Ramsden J, Harris JA. The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent [J]. Environ Sci Pollut Res, 2013, 20 (2): 1041-1049
40 Judy JD, Kirby JK, Creamer C, McLaughlin MJ, Fiebiger C, Wright C, Cavagnaro TR, Bertsch PM. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil [J]. Environ Pollut, 2015, 206: 256-263
41 Cao J, Feng Y, He S, Lin X. Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study [J]. Appl Soil Ecol, 2017, 119: 307-316
42 Hassan SED, Boon EVA, St-Arnaud M, Hijri M. Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal‐polluted soils [J]. Mol Ecol, 2011, 20 (16): 3469-3483
43 Daniell TJ, Husband R, Fitter AH, Young JPW. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops [J]. FEMS Microbiol Ecol, 2001, 36 (2-3): 203-209
44 葛兴彬, 王振虹, 郭楚奇, 孙馨, 李铁龙, 王薇. 纳米零价铁的生态毒性效应研究进展[J]. 生态毒理学报, 2015, 10 (3): 28-37 [Ge XB, Wang ZH, Guo CQ, Sun X, Li TL, Wang W. Review of the ecotoxicity of nanoscale zero-valent iron [J]. Asian J Ecotoxicol, 2015, 10 (3): 28-37]
45 Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES. More than the ions: the effects of silver nanoparticles on Lolium multiflorum [J]. Environ Sci Technol, 2011, 45 (6): 2360-2367
46 Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia ACS. Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes [J]. Int J Mol Sci, 2015, 16 (10): 23630-23650
47 Wang F, Jing X, Adams CA, Shi Z, Sun Y. Decreased ZnO nanoparticle phytotoxicity to maize by arbuscular mycorrhizal fungus and organic phosphorus [J]. Environ Sci Pollut Res, 2018, 25 (24): 23736-23747
48 Bainard LD, Bainard JD, Hamel C, Gan Y. Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem [J]. FEMS Microbiol Ecol, 2014, 88 (2): 333-344
49 Xiang D, Verbruggen E, Hu Y, Veresoglou SD, Rillig MC, Zhou W, Xu T, Li H, Hao Z, Chen Y, Chen B. Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China [J]. New Phytol, 2014, 204 (4): 968-978
50 Abd-Alla MH, Nafady NA, Khalaf DM. Assessment of silver nanoparticles contamination on faba bean-rhizobium Leguminosarum bv. viciae-Glomus aggregatum symbiosis: implications for induction of autophagy process in root nodule [J]. Agric Ecosy Environ, 2016, 218: 163-177
51 Xu Z, Wu Y, Xiao Z, Ban Y, Belvett N. Positive effects of Funneliformis mosseae inoculation on reed seedlings under water and TiO2 nanoparticles stresses [J]. World J Microb Biotechnol, 2019, 35 (6): 81
52 Hund-Rinke K, Simon M. Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids (8 pp) [J]. Environ Sci Pollut Res, 2006, 13 (4): 225-232
53 Noori A, White JC, Newman LA. Mycorrhizal fungi influence on silver uptake and membrane protein gene expression following silver nanoparticle exposure [J]. J Nanopart Res, 2017, 19 (2): 66
54 El-Argawy E, Rahhal MMH, El-Korany A, Elshabrawy EM, Eltahan RM. Efficacy of some nanoparticles to control damping-off and root rot of sugar beet in El-Behiera Governorate [J]. Asian J Plant Pathol, 2017, 11 (1): 35-47
55 Bernhardt ES, Colman BP, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L. An ecological perspective on nanomaterial impacts in the environment [J]. J Environ Qual, 2010, 39 (6): 1954-1965
56 Dueck TA, Visser P, Ernst WHO, Schat H. Vesicular-arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soil [J]. Soil Biol Biochem, 1986, 18 (3): 331-333
57 Siani NG, Fallah S, Pokhrel LR, Rostamnejadi A. Natural amelioration of Zinc oxide nanoparticle toxicity in fenugreek (Trigonella foenim-gracum) by arbuscular mycorrhizal (Glomus intraradices) secretion of glomalin [J]. Plant Physiol Biochem, 2017, 112: 227-238
58 Gohre V, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation [J]. Planta, 2006, 223 (6): 1115-1122
59 孙耀琴, 申聪聪, 葛源. 典型纳米材料的土壤微生物效应研究进展[J]. 生物毒理学报, 2016, 11 (5): 2-13 [Sun YQ, Shen CC, Ge Y. Review on microbiological effects of typical nanomaterials in soil ecosystem [J]. Asian J Ecotoxicol, 2016, 11 (5): 2-13]
60 Cao J, Feng Y, Lin X, Wang J. Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils [J]. Front Environ Sci, 2016, 4: 10
61 Wang F, Adams CA, Shi Z, Sun Y. Combined effects of ZnO NPs and Cd on sweet sorghum as influenced by an arbuscular mycorrhizal fungus [J]. Chemosphere, 2018, 209: 421-429
62 He Y, Yang R, Lei G, Li B, Jiang M, Yan K, Zu Y, Zhan F, Li Y. Arbuscular mycorrhizal fungi reduce cadmium leaching from polluted soils under simulated heavy rainfall [J]. Environ Pollut, 2020, 263: 114406
63 Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis [J]. Plant Soil, 1994, 159 (1): 89-102
64 刘雪琴. 纳米ZnO/AM真菌对玉米的生物效应及作用机理研究[D]. 重庆: 西南大学, 2015 [Liu XQ. Biological effects of nano-ZnO and arbuscular mycorrhizal fungi on maize and its mechanism [D]. Chongqing: Southwest University, 2015]
65 郭艳娥, 李芳, 李应德, 段廷玉. AM真菌促进植物吸收利用磷元素的机制[J]. 草业科学, 2016, 33 (12): 2379-2390 [Guo YE, Li F, Li YD, Duan TY. Progress in the elucidation of the mechanisms of arbuscular mycorrhizal fungi in promotion of phosphorus uptake and utilization by plants [J]. Pratac Sci, 2016, 33 (12): 2379-2390]
66 Azcon R, del Carmen Peralvarez M, Biro B, Roldan A, Ruiz-Lozano JM. Antioxidant activities and metal acquisition in mycorrhizal plants growing in a heavy-metal multicontaminated soil amended with treated lignocellulosic agrowaste [J]. Appl Soil Ecol, 2009, 41 (2): 168-177
67 Burleigh SH, Kristensen BK, Bechmann IE. A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization [J]. Plant Mol Biol, 2003, 52 (5): 1077-1088
68 唐玉姝, 魏朝富, 颜廷梅, 杨林章, 慈恩. 土壤质量生物学指标研究进展[J]. 土壤, 2007, 39 (2): 157-163 [Tang YS, Wei CF, Yan TM, Yang LZ, Ci E. Biological indicator of soil quality: a review [J]. Soils, 2007, 39 (2): 157-163]
69 Dries J, Bastiaens L, Springael D, Agathos SN, Diels L. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems [J]. Environ Sci Technol, 2004, 38 (10): 2879-2884


Last Update: 2020-10-25