|Table of Contents|

Effects of planting Sailx integra on the microbial community structure and the physical and chemical properties during cadmium contaminated soil remediation(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2019 03
Page:
501-509
Research Field:
Publishing date:

Info

Title:
Effects of planting Sailx integra on the microbial community structure and the physical and chemical properties during cadmium contaminated soil remediation
Author(s):
GAO Zhuotian1 NIU Xiaoyun1 ZHOU Jian1 WANG Yun2 & HUANG Dazhuang1**
1 College of Landscape and Travel, Agricultural?University?of Hebei, Baoding 071000, China 2 Shijiazhuang Botanical Garden Management Office, Shijiazhuang 050000, China
Keywords:
Salix integra cadmium pollution nutrient microbial metabolic activity microbial community structure
CLC:
Q948.122.3
PACS:
DOI:
10.19675/j.cnki.1006-687x.201901016
DocumentCode:

Abstract:
In order to study the effects of planting Salix integra on the microbial community structure in cadmium-contaminated soil, a pot experiment was carried out with one-year old cuttings of seedlings as starting material. We set up un-planted and planted S. integra areas with four levels of cadmium treatments (0, 50, 100, and 150 mg/kg). After one year of planting, the rhizosphere soil, non-rhizosphere soil, and unplanted soil were collected. The physical and chemical properties of the soil and the fractionation of heavy metal content were determined. The Biolog-ECO plate method was used to measure the microbial metabolic functional diversity and the T-RFLP method was used to measure the diversity of the microbial community structure. Redundancy analysis (RDA) was used to analyze the correlation between microbial community structure diversity, physical and chemical properties of the soil, and fractionation of heavy metal content. The nutrient content in the cadmium-contaminated treatment group was higher than that in the un-planted group. The average utilization rate of the six types of carbon sources was significantly different among different soil sources. The relative utilization ratio of carbohydrates and phenolic acids was higher in un-planted soil than in planted soil, and the amount of amino acids, carboxylic acids, polymers, and amines was the highest in rhizosphere soil. There was no significant difference in the rhizosphere microbial richness and the diversity index between the control group and the treatment group, but the dominant microbial species were significantly different. RDA analysis showed that the microorganisms in the contaminated soil were more strongly correlated with environmental factors, and the reducible cadmium had a strong correlation with the dominant B-T-RFs (137), and B-T-RFs (141). Planting S. integra can significantly promote microbial metabolic activity, microbial richness index, and diversity index in cadmium-contaminated soil, which in turn has a significant impact on the dominant microbial population and metabolic composition. The main environmental factors affecting dominant microorganisms in rhizosphere and non-rhizosphere soils are different. Microorganisms in the treatment group are more affected by the environment.

References

1. 李宏图. 英国工业革命时期的环境污染和治理[J]. 探索与争鸣, 2009, 1 (2): 60-64 [Li HT. Environmental pollution and governance during the British Industrial Revolution [J]. Expl Free Views, 2009, 1 (2): 60-64] 2.
茹淑华, 苏德纯, 王激清. 土壤镉污染特征及污染土壤的植物修复技术机理[J]. 中国生态农业学报, 2006, 14 (4): 29-33 [Ru SH, Su DC, Wang JQ. Characteristics of Cd pollution in soil and the mechanisms of phytoremediation for soil contamination [J]. Chin J Eco-Agric, 2006, 14 (4): 29-33] 3.
Sheoran, V, Sheoran A, Poonia P. Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review[J]. Cr Rev Environ Sci Technol, 2010, 41 (2): 168–214 4.
Wuana RA, Okieimen FE. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation [J]. ISRN Ecol, 2011, 2011 (2090-4614): 1-20 5.
串丽敏, 赵同科, 郑怀国, 赵静娟, 张晓静, 谭翠萍, 李光达. 土壤重金属污染修复技术研究进展[J]. 环境科学与技术, 2014, 37 (S2): 213-222 [Chuan LM, Zhao TK, Zheng HG, Zhao JJ, Zhang XJ, Tan XC, Li GD. Research advances in remediation of heavy metal contaminated soils [J]. Environ Sci Techn, 2014, 37 (120): 213-222] 6.
骆永明. 污染土壤修复技术研究现状与趋势[J]. 化学进展, 2009, 21 (2): 558-565 [Luo YM. Current research and development in soil remediation technologies [J]. Progr Chem, 2009, 21 (2): 558-565] 7.
Cui HB, Fan YC, Yang J, Xu L, Zhou J, Zhu ZQ. In situ phytoextraction of copper and cadmium and its biological impacts in acidic soil [J]. Chemosphere, 2016, 161: 233-241 8.
Qin H, Brookes PC, Xu JM. Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development [J]. Environ Pollut, 2014 (184): 306-312 9.
Jakub R, Michal K, Michal S, Hynek S, Petr S, Jan P, Tomas M, Ondrej U. Plants rather than mineral fertilization shape microbial community structure and functional potential in legacy contaminated soil [J]. Front Microb, 2016, 7: 995 10.
Sheng XF, Xia JJ. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria [J]. Chemosphere, 2006, 64 (6): 1036-1042 11.
Sun XY, Zhou YL, Tan YJ, Wu ZX, Lu P, Zhang GH, Yu FX. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China [J]. Environ Sci Pollut Res Int, 2018, 25 (22): 22106-22119 12.
苗欣宇, 周启星. 污染土壤植物修复效率影响因素研究进展[J]. 生态学杂志, 2015, 34 (3): 870 -877 [Miao XY, Zhou QX. Some research progresses in influencing factors for the efficiency of contaminated soil phy-toremediation [J]. Chin J Ecol, 2015, 34 (3): 870-877] 13.
Felix H. Field trials for in situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants [J]. J Plant Nutr Soil Sci, 1997, 160 (4): 525-529 14.
Klang Westin E, Eriksson J. Potential of Salix as phytoextractor for Cd on moderately contaminated soils [J]. Plant Soil, 2003, 249 (1): 127-137 15.
杨卫东, 陈益泰. 不同杞柳品种对镉(Cd)吸收与忍耐的差异[J]. 林业科学研究, 2008, 21 (6): 857-861 [Yang WD, Chen YT. Differences in uptake and tolerance to cadmium in varieties of Salix integra [J]. For Res, 2008, 21 (6): 857-861] 16.
王树凤, 施翔, 田生科, 孙海菁, 杨肖娥, 陈益泰, 刘婷. 杞柳不同品种对铅的积累、耐性及叶片元素原位微区分布特征[J]. 林业科学, 2016, 52 (5): 71-80 [Wang SF, Shi X, Tian SK, Sun HJ, Yang XE, Chen YT, Liu T. Variation in lead accumulation and tolerance in different varieties of Sailx integra and in situ distribution of elements in leaves under Pb stress [J]. Sci Silv Sin, 2016, 52 (5): 71-80] 17.
江玉梅, 张晨, 黄小兰, 倪才英, 王金凤, 宋鹏飞, 张志斌. 重金属污染对鄱阳湖底泥微生物群落结构的影响[J]. 中国环境科学, 2016, 36 (11): 3475-3486 [Jiang Y M, Zhang C, Huang X L, Ni CY, Wang JF, Song PF, Zhang ZB. Effect of heavy metals in the sediment of Poyang Lake estuary on microbial communities structure base on Mi-sequencing [J]. Chin Environ Sci, 2016, 36 (11): 3475-3486] 18.
陈欣瑶, 杨惠子, 陈楸健, 王丽娜, 王贵鑫, 张园. 重金属胁迫下不同区域土壤的生态功能稳定性与其微生物群落结构的相关性[J]. 环境化学, 2017, 36 (2): 356-364 [Cheng XY, Yang HZ, Chen QJ, Wang LN, Wang GX, Zhang Y. Correlation between microbial community structure and soil ecosystem functional stability under heavy metal stress [J]. Environ Chem, 2017, 36 (2): 356-364] 19.
陆文龙, 徐松巍, 李英华. 重金属镉对土壤呼吸和土壤微生物群落的影响研究[J]. 吉林化工学院学报, 2013, 30 (7): 65-67 [Lu WL, Xu SW, Li YH. Influence of heavy metal cadmium on the soil breath and the soil microbial community [J]. J Jilin Inst Chem Technol, 2013, 30 (7): 65-67] 20.
Riley D, Baeber SA. Bicarbonate accumulation and pH changes at the soybean (Glycine max (L.) Merr.) root-soil interface [J]. Soil Sci Soc Am J, 1969, 33 (6): 905-908 21.
Riley D, Baeber SA. Salt accumulation at the soybean (Glycine max (L.) Merr.) root-soil interface [J]. Soil Sci Soc Am J, 1970, 34 (1): 154-155 22.
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000 [Bao SD. Soil Agro-Chemistrical Analysis [M]. Beijing: Agriculture Press, China, 2000] 23.
高晓奇, 肖能文, 叶瑶, 付梦娣, 李俊生. 基于Biolog-eco分析长庆油田土壤微生物群落功能多样性特征[J]. 应用与环境生物学报, 2014, 20 (5): 913-918 [Gao XQ, Xiao NW, Ye Y, Fu MD, Li JS. Analysis of microbial community functional diversity in the Changqing Oilfield based on Biology-ECO method [J]. Chin J Appl Environ Biol, 2014, 20 (5): 913-918] 24.
王强, 戴九兰, 吴大千, 余悦, 申天琳, 王仁卿. 微生物生态研究中基于BIOLOG方法的数据分析[J]. 生态学报, 2010, 30 (3): 817-823 [Wang Q, Dai JL, Wu DQ, Yu Y, Shen TL, Wang RQ. Statistical analysis of data from BIOLOG method in the study of microbial ecology [J]. Acta Ecol Sin, 2010, 30 (3): 817-823] 25.
Haack S K, Garchow H, Klug M J, Forney LJ. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns [J]. Appl Environ Microbiol, 1995, 61 (4): 1458-68 26.
Preston-Mafham J, Boddy L, Randerson PF. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles-a critique [J]. FEMS Microbiol Ecol, 2002, 42 (1): 1-14 27.
杨肖娥, 龙新宪, 倪吾钟. 超积累植物吸收重金属的生理及分子机制[J]. 植物营养与肥料学报, 2002, 8 (1): 8-15 [Yang XE, Long XX, Ni WZ. Physiological and molecular mechanisms of heavy metal uptake by hyperaccumulating plants [J]. J Plant Nutr Fert, 2002, 8 (1): 8-15] 28.
张福锁. 植物根引起的根pH值改变的原因及效应[J]. 土壤通报, 1993, 24 (1): 43-45 [Zhang FS. Causes and effects of root pH changes caused by plant roots [J]. Chin J Soil Sci, 1993, 24 (1): 43-45] 29.
Materechera SA, Dexter AR, Alston AM. Formation of aggregates by plant roots in homogenised soils [J]. Plant Soil, 1992, 142 (1): 69-79 30.
Schulin R, Geiger G, Furrer G. Heavy metal retention by soil organic matter under changing environmental conditions [J]. Bioge Pollut Soils Sed, 1995, 53-85 31.
李廷强, 朱恩, 杨肖娥, 申屠佳丽. 超积累植物东南景天根际可溶性有机质对土壤锌吸附解吸的影响[J]. 应用生态学报, 2008, 19 (4): 838-844 [Li TQ, ZhuE, Yang XE, Shentu JL. Effects of dissolved organic matter derived from hyper accumulator Sedum alfredii Hance rhizosphere on Zn adsorption and desorption in soil [J]. Chin J Appl Ecol, 2008, 19 (4): 838-844] 32.
朱江, 周俊, 费群燕, 兰京, 马荣艳. 外源铅在土壤中的形态、分布及其对土壤养分的影响[J]. 水土保持学报, 2008, 22 (1): 74-77 [Zhu J, Zhou J, Fei QY, Lan J, Ma RY. Form and distribution of exogenous Pb in soil and its effect on soil nutrition [J]. J Soil Water Conserv, 2008, 22 (1): 74-77] 33.
刁展. 外源重金属对不同类型土壤养分及微生物活性的影响[D]. 杨凌: 西北农林科技大学, 2016 [Diao Z. Effects of exogenous heavy metals on soil nutrients and biological activity in different types of soil [D]. Yangling: Northwest A&F University, 2016] 34.
He Y, Xu JM, Lü XF, Ma ZH, Wu JJ, Shi JC. Does the depletion of pentachlorophenol in root-soil interface follow a simple linear dependence on the distance to root surfaces? [J]. Soil Biol Biochem, 2009, 41: 1807-1813 35.
Yang WH, Zhang TX, Lin S, Ni W. Distance-dependent varieties of microbial community structure and metabolic functions in the rhizosphere of Sedum alfredii Hance during phytoextraction of a cadmium-contaminated soil [J]. Environ Sci Pollut Res Int, 2017, 24 (16): 1-15 36.
林琦, 郑春荣, 陈怀满, 陈英旭. 根际环境中镉的形态转化[J]. 土壤学报, 1998, 35 (4): 461-467 [Lin Q, Zheng CR, Chen HM. Chen YX. Transformation of cadmium species in rhizosphere [J]. Acta Pedol Sin, 1998, 35 (4): 461-467] 37.
Hu K, Wang LB. Application of BIOLOG Microplate Technique to the Study of Soil Microbial Ecology [J]. Chin J Soil Sci, 2007, 39 (4): 819-821 38.
Hortal S, Bastida F, Armas C, Lozano YM. Soil microbial community under a nurse-plant species changes in composition, biomass and activity as the nurse grows [J]. Soil Biol Biochem, 2013, 64: 139-146 39.
Shinpei Y, Masaaki F, Kenichi W. Takehiro M. Successional changes in the soil microbial community along a vegetation; development sequence in a subalpine volcanic desert on Mount Fuji [J]. Jpn Plant Soil, 2013, 364 (1-2): 261-272 40.
Pishchik VN, Vorob’Ev NI, Provorov NA, Khomyakov YV. Mechanisms of plant and microbial to heavy metals in plant-microbial systems [J]. Microbiology, 2016 (85): 257-271 41.
Roane TM, Pepper IL. Microbial responses to environmentally toxic cadmium [J]. Microbial Ecol, 1999, 38 (4): 358-364 42.
Zhang J, Wang LH, Yang JC, Liu H. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil [J]. Sci Total Environ, 2015, 508: 29-36 43.
Yan X, Fan JB, Zhu WX, Erick A. Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation [J]. Front Plant Sci, 2016, 7: 755 44.
Niu ZX, Li XD, Sun LN, Sun TX. Dynamics of three organic acids (malic, acetic and succinic acid) in sunflower exposed to cadmium and lead [J]. Int J Phyt, 2013, 15: 690-702 45.
Seshadri B, Bolan NS, Naidu R. Rhizosphere-induced heavy metal (loid) transformation in relation to bioavailability and remediation [J]. J Soil Sci Plant Nutr, 2015, 15 (ahead): 35-38 46.
Luo Q, Wang SY, Sun LN, Wang H. Identification of root exudates from the Pb-accumulator Sedum alfredii under Pb stresses and assessment of their roles [J]. J Plant Interact, 2017, 12: 272-278 47.
Tao Q, Hou DD, Yang XE, Li TQ. Oxalate secretion from the root apex of Sedum alfredii contributes to hyperaccumulation of Cd [J]. Plant Soil, 2016, 398 (1-2): 139-152 48.
Kuang YW, Wen DZ, Zhong CW, Zhou GY. Root exudates and their roles in phytoremediation [J]. Acta Phytoecol Sin, 2003, 27: 709-717 49.
Blake RCI, Choate DM. Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site [J]. Environ Toxicol Chem, 2010, 12 (8): 1365-1376 50.
Peruzzi E, Masciandaro G, Macci C, Serena D. Heavy metal fractionation and organic matter stabilization in sewage sludge treatment wetlands [J]. Ecol Eng, 2011, 37 (5): 771-778 51.

Memo

Memo:
-
Last Update: 2019-06-25