|Table of Contents|

Differences of the intestinal microbial structure of adult giant panda in different regions and its correlation with the digestibility of cellulose(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2019 03
Page:
736-742
Research Field:
Articles
Publishing date:

Info

Title:
Differences of the intestinal microbial structure of adult giant panda in different regions and its correlation with the digestibility of cellulose
Author(s):
ZHAN Mingye1 FU Xiaohua1 ZHANG Shu2 ZHANG Xin3 YANG Haidi3 YU Jinhua4 WANG Aishan2 & WANG Lei1**
1 College of Environmental Science and Engineering in Tongji University, Institute of Pollution Control and Ecological Safety in Shanghai, Shanghai 200092, China 2 Shanghai Zoo, Shanghai 200335, China 3 Chinese Giant Panda Protection Research Center, Chengdu 611830, China 4 Shanghai Wild Zoo Development Co., Ltd., Shanghai 201399, China
Keywords:
giant panda bamboo ingredient intestinal organism cellulose correlation
CLC:
Q959.838.05: Q938.1
PACS:
DOI:
10.19675/j.cnki.1006-687x.201808012
DocumentCode:

Abstract:
The giant panda is one of the rarest species in our country. People focus on raising, breeding, and conservation of giant pandas. The intestinal microorganisms are very important for giant pandas’ digestion, absorption, metabolism, and immunity. The purpose of this study was to investigate the differences in the intestinal microbial structure of adult giant pandas between Shanghai and Sichuan and the relationship with their ability to digest cellulose. The gut microbial diversity and cellulase activity of giant pandas, as well as the environmental differences and food properties in two places were analyzed. The correlation of the microbial properties and cellulase activities of adult giant pandas were analyzed. The microbial diversity was greater in the gut of adult giant pandas in Shanghai, and the dominant bacteria and unique genus of giant pandas in Shanghai were vastly different than that in Sichuan pandas. Moreover, the cellulose digestibility was higher in Shanghai because of its richer bacterial diversity and more abundant Bacillus and Unclassified_f_Montagnulaceae. The differences in the intestinal microbial structure and cellulose digestive abilities of adult giant pandas might be affected by some external environmental factors, such as food and attitude. Overall, the difference in the intestine microbial diversity of adult giant pandas in different regions could partly affect cellulolytic capacity.

References

1 胡旭, 王涛, 梁姗, 李薇, 吴晓丽, 金锋. 肠道微生物与认知功能[J]. 中国微生态学杂志, 201,. 27 (11): 1359-1364 [Hu X, Wang T, Liang S, Li W, Wu XL, Jin F.The role of gut microbiota in cognitive function [J]. Chin J Microecol, 2015, 27 (11): 1359-1364.]
2 Guo L. PGRP-SC2 promotes gut immune homeostasis to limit commensal dysbiosis and extend lifespan [J]. Cell, 2014, 156 (1-2): 109-122
3 Chu H. Gene-microbiota interactions contribute to the pathogenesis of inflammatory bowel disease [J]. Science, 2016, 352 (6289): 1116
4 Perry RJ. Acetate mediates a microbiome-brain-β cell axis promoting metabolic syndrome [J]. Nature, 2016, 534 (7606): 213-217
5 Rangan KJ. A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens. Science, 2016, 353 (6306): 1434
6 Shao Y. Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota [J]. Cell Chem Biol, 2017 , 24 (1): 66
7 Hesla HM. Impact of lifestyle on the gut microbiota of healthy infants and their mothers—the ALADDIN birth cohort [J]. FEMS Microbiol Ecol, 2015, 90 (3): 791-801
8 Gohir W. Pregnancy-related changes in the maternal gut microbiota are dependent upon the mother’s periconceptional diet [J]. Gut Microb, 2015, 6 (5): 310-320
9 朱立猛. 菊粉对小鼠肠道微生物调节作用的研究[D]. 北京: 中国科学院大学, 2017 [Zhu LM. Study on intestinal microorganism regulation effect of inulin on mice [D]. Beijing: University of Chinese Academy of Science, 2017]
10 Ohland CL. Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome [J]. Psychoneuroendocrinology, 2013, 38 (9): 1738-174
11 何永果, 晋蕾, 李果, 李才武, 李蓓, 李伟, 张亚辉, 胡正泉, 黄炎, 张和民, 邹立扣. 基于高通量测序技术研究成年大熊猫肠道菌群[J]. 应用与环境生物学报, 2017, 23 (5): 771-777 [He YG, Jin L. Li G, Li CW, Li B, Li W, Zhang YH, Hu ZQ, Huang Y, Zhang HM, Zou LK. Gut microbiome of adult giant pandas based on high-throughput sequencing technology [J]. Chin J Appl Environ Biol, 2017, 23 (5): 771-777]
12 李蓓, 郭莉娟, 龙梅, 汤纯香, 周晓平, 罗燕, 邹立扣. 圈养大熊猫肠道微生物分离、鉴定及细菌耐药性研究[J]. 四川动物, 2014, 33 (2): 161-166 [Li B, Guo LJ, Long M, Tang CX, Zhou XP, Luo Y, Zou LK. Isolation and antimicrobial resistance of bacteria from intestinal tract of giant panda [J]. Sichuan J Zool, 2014, 33 (2): 161-166]
13 曹涵文, 吴珑韬, 甘乾福, 鲍若虹, 梁学武. 熊猫粪便中纤维素降解菌的筛选与鉴定[J]. 家畜生态学报, 2015, 36 (6): 19-25 [Cao HW, Wu LT, Gan QF, Bao RH, Liang XW. Isolation and Identification of cellulose-degradation bacteria from panda dung [J]. Acta Ecol Anim Dom, 2015, 36 (6): 19-25.]
14 马缨, 殷红涛. 大熊猫源纤维素分解菌的分离及产酶条件研究[J]. 黑龙江畜牧兽医, 2017 (2): 172-174 [Ma Y, Yin HY. Isolation and enzyme production of giant panda derived cellulolytic bacteria [J]. Heilongjiang Ani Husb, 2017 (2): 172-174]
15 张文平, 张志和. 大熊猫肠道宏基因组发育分析[R]. 第十三届全国野生动物生态与资源保护学术研讨会暨第六届中国西部动物学学术研讨会, 成都, 2017 [Zhang WP, Zhang ZH. Macro genome development analysis of giant panda’s intestine [R]. The 13th National Symposium on Wildlife Conservation and the 6th Western China Zoological Symposium, Chengdu, 2017]
16 房伟, 方泽民, 张学成, 肖亚中. 肠道微生物协助大熊猫转化降解木质素的证据[R]. 全国微生物资源学术暨国家微生物资源平台运行服务研讨会, 呼和浩特, 2012 [Fang W, Fang ZM, Zhang XC, Xiao YZ. Intestinal microorganisms assisting giant pandas in transforming and degrading lignin [R]. National Microbial Resources Academic and National Microbial Resource Platform Operation Service Seminar, Huhhot, 2012]
17 Li R. Erratum: the sequence and de novo assembly of the giant panda genome [J]. Nature, 2010, 463: 311-317
18 陆海燕, 宋美, 史卫东, 郭铁. 蒽酮光度法测定羧甲基纤维素钠[J]. 天津科技大学学报, 1996 (2): 86-88 [Lu HY, Song M, Shi WD, Guo T. Anthrone photometric on the determination of sodium carboxymethyl cellulose [J]. J Tianjin Univ Light Ind, 1996 (2): 86-88]
19 范鹏程, 田静, 黄静美, 雷文泉, 邱会东. 花生壳中纤维素和木质素含量的测定方法[J]. 重庆科技学院学报: 自然科学版, 2008, 10 (5): 64-65. [Fan PC, Tian J, Huang JM, Lei WQ, Qiu HD. On the determination of cellulose and lignin of peanut shells [J]. J Chongqing Univ Sci Technol Nat Sci Ed, 2008, 10 (5): 64-65.]
20 徐昶, 龙敏南, 邬小兵, 徐惠娟, 陈重安, 张凤章, 许良树. 高产纤维素酶菌株的筛选及产酶条件研究[J]. 厦门大学学报(自然版), 2005, 44 (1): 107-111 [Xu C, Long MN, Wu XB, Xu HJ, Chen CA, Zhang FZ, Xu LS. Screening and characterization of a high cellulase producing strain Aspergillus glaucus XC9 [J]. J Xiamen Univ (Nat Sci) , 2005, 44 (1): 107-111]
21 袁楠, 亢宗静, 卢圣鄂, 王莹燕, 张小平, 辜运富. 富集培养下的若尔盖高原湿地低温纤维素降解细菌群落结构[J]. 应用与环境生物学报, 2016, 22 (3): 402-408 [Yuan N, Kang ZJ, Lu SE, Wang YY, Zhang XP, Gu YF. Community structures of the cold-adapted cellulose-degrading bacteria in the Zoige plateau wetland under enrichment culture conditions [J]. Chin J Appl Environ Biol, 2016, 22 (3): 402-408]
22 曾文慧, 钟俊鸿, 李秋健, 刘炳荣. 反应温度对台湾乳白蚁内外源纤维素酶活力的差异影响[J]. 江苏农业科学, 2017, 45 (8): 91-94 [Zeng WH, ZhongJH, Li QJ, Liu BR. Effects of reaction temperature on endogenous and exogenous cellulase activities of C. formosanus in Taiwan [J]. Jiangsu Agric Sci, 2017, 45 (8): 91-94.]
23 骆伦伦. 秸秆对黄粉虫生长发育、消化酶和肠道微生物的影响[D]. 杭州: 浙江农林大学, 2017 [Luo LL. Effects of straw on growth, development, digestive enzymes and intestinal microbes of Tenebrio molitor [D]. Hangzhou: Zhejiang A&F University, 2017]
24 段云峰, 吴晓丽, 金锋. 饮食对自闭症的影响研究进展[J]. 科学通报, 2015, 60 (30): 2845-2861 [Duan YF, Wu XL, Jin F. Advances in research on the effects of diet on autism [J]. Chin Sci Bull, 2015, 60 (30): 2845-2861]
25 Justyna MC. Transcriptome remodeling of Pseudomonas putida KT2440 during mcl-PHAs synthesis: effect of different carbon sources and response to nitrogen stress [J]. J Ind Microbiol Biotechnol, 2018, 45 (6): 1-14
26 步长英. 丝兰皂甙、芽孢杆菌对肉鸡生产性能、氮代谢和排泄物氨气散发量的影响[D]. 泰安: 山东农业大学, 2008 [Bu CY. Effect of saponin and Bacillus on broiler performance, nitrogen metabolism and excretion ammonia emissions [D]. Tai’an: Shandong Agricultural University, 2008]
27 王启明, 中国担子菌酵母的分类与分子系统学研究[D]. 北京: 中国科学院微生物所, 2004 [Wang QM. Classification and molecular systematic studies of Basidiomycetes in China [D]. Beijign: Institute of Microbiology, Chinese Academy Science, 2004]
28 林海萍, 黄小波, 毛胜凤, 张昕. 野生竹黄菌生物学性状研究[J]. 中草药, 2008, 39 (9): 1407-1409 [Lin HP, Huang XB, Mao SF, Zhang X. Study on biological characters of wild bamboo flavobacterium [J]. Chin Ttaditl Herb Drugs, 2008, 39 (9): 1407-1409]
29 刘海波, 绳秀珍, 唐小千, 邢婧, 战文斌. 培养条件对海豚链球菌的生长及其胞外产物蛋白组成的影响[J]. 中国动物检疫, 2016, 33 (5): 85-89 [Liu HB, Sheng XZ, Tang XQ, Xing J, Zhan WB. Effects of culture conditions on the growth of Streptococcus iniae and the protein composition of extracellular products [J]. Chin Anim Health Insp, 2016, 33 (5): 85-89]
30 贾小营. 不同季节圈养非洲狮肠道微生物多样性分析及功能学初步研究[D]. 长春: 吉林农业大学, 2017 [Jia XY. Analysis of intestinal microbial diversity and functional studies of African lions in different seasons [D]. Chagnchun: Jilin Agricultural University, 2017]
31 汪萍萍, 袁兴中, 梁运姗, 曾光明, 黄华军, 祝慧娜, 晁阳, 孙婷. 铜绿假单胞菌对白腐菌产木质纤维素降解酶的影响[J]. 环境科学学报, 2011, 31 (10): 2125-2131 [Wang PP, Yuan XZ, Liang YS, Zeng GM, Huang HJ, Zhu HN, Chao Y, Sun T. Effect of Pseudomonas aeruginosa on the production of lignocellulase from Phanerochaete chrysosporium [J]. Acta Sci Circumst, 2011, 31 (10): 2125-2131]
32 朱亚静. 鹅肠道纤维素酶和蛋白酶活性分析以及纤维素降解菌的筛选[D]. 南宁: 广西大学, 2013 [Zhu YJ. Analysis of cellulase and protease activities in goose intestine and screening of cellulose degrading bacteria [D]. Nanning: Guangxi University, 2013.]
33 刘艳红, 钟志军, 艾生权, 王承东, 夏玉, 吴虹林, 李才武, 杨海迪, 林珊珊, 彭广能. 亚成体大熊猫肠道纤维素降解真菌的分离与鉴定[J]. 中国兽医科学, 2015 (1): 43-49 [Liu YH, Zhong ZJ, Ai SQ, Wang CD, Xia Y, Wu HL, Li CW, Yang HD, Lin SS, Peng GN. Isolation and identification of intestinal cellulose-degrading fungi in sub-adult giant pandas [J]. Chin Vet Sci, 2015 (1): 43-49]
34 刘松. 竹虫(Omphisa fuscidentalis)肠道微生物多样性及纤维素酶学特性研究[D]. 北京: 中国农业科学院, 2017 [Liu S. The intestinal microbial diversity and cellulase properties of Omphisa fuscidentalis [D]. Beijing: Chinese Academy of Agricultura Science, 2017]
35 Lópezmondéjar R, Zühlke D, Becher D. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems [J]. Sci Rep, 2016, 6 (6): 25279
36 刘占英. 绵羊瘤胃主要纤维降解细菌的分离鉴定及不同氮源对其纤维降解能力的影响[D]. 呼和浩特: 内蒙古农业大学, 2008 [Liu ZY. Isolation and identification of main fiber degradation bacteria in sheep rumen and effects of different nitrogen sources on their fiber degradation capability [D]. Huhhot: Inner Mongolia Agricultural University, 2008]
37 李昊. 固氮菌和纤维素分解菌的分离及混合添加对瘤胃发酵的影响[D]. 哈尔滨: 东北农业大学, 2013 [Li H. Effects of azotobacter and cellulolytic bacterium on the rumen fermentation by mixed addition [D]. Harbin: Northeast Agricultural University, 2013]

Memo

Memo:
-
Last Update: 2019-06-25