|Table of Contents|

Effects of polycyclic aromatic hydrocarbons (PAHs) on nitrification potential and the abundance and community composition of ammonia-oxidizing* microorganisms in different types of paddy soils in China

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2019 03
Page:
584-592
Research Field:
Articles
Publishing date:

Info

Title:
Effects of polycyclic aromatic hydrocarbons (PAHs) on nitrification potential and the abundance and community composition of ammonia-oxidizing* microorganisms in different types of paddy soils in China
Author(s):
LI Huilin1 2 & LU Lu1**
1 College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China 2 Key Laboratory of Southwest China Wildlife Resources Conservation, College of Life Sciences, China West Normal University, Nanchong 637002, China
Keywords:
agriculture soil PAHs contamination ammonia-oxidizing bacteria ammonia-oxidizing archaea ecological effect
CLC:
S154.1
PACS:
DOI:
10.19675/j.cnki.1006-687x.201808011
DocumentCode:

Abstract:
To reveal the effects of polycyclic aromatic hydrocarbons (PAHs) on ammonia oxidation processes in paddy soils, a laboratory incubation experiment was conducted to investigate the response of soil potential nitrification, ammonia-oxidizing archaea (AOA), and bacteria (AOB) to the addition of phenanthrene, fluoranthene, and benzo[a]pyrene in eight geographically different paddy soils in China. The results showed that the eight soils were different in physicochemical properties, PAHs degradation behaviors, and the structure and abundance of AOA and AOB. The impact of PAHs on soil nitrification potential activity also varied among different soils. The nitrification potential activities of soils in Heilongjiang (black soils), Shanxi (cinnamon soils), Anhui (yellow-cinnamon soils), and Hunan (yellow soils) soils were significantly inhibited by PAHs (P < 0.05), whereas the nitrification potential activity of Sichuan (calcareous purple soils) was stimulated. PAHs showed no significant effect on the nitrification potential activities of Beijing (fluvo-auric soils), Henan (fluvo-aquic soils) and Chongqing (neutral purple soils) soils. The abundance of AOA decreased significantly after the addition of PAHs, whereas the abundance of AOB increased. The correlation analysis showed there was a significant correlation between the abundance of AOA and nitrification potential activity in the soils (P < 0.05). The Shannon diversity index of AOA and AOB decreased remarkably in the presence of PAHs in the soils, except for Sichuan and Chongqing soil. AOB community structure was more affected by PAHs compared with that of AOA. The addition of PAHs stimulated the growth of AOB belonging to Nitrosospira cluster 3 and inhibited the growth of AOB belonging to Nitrosomonas cluster 7. PAHs had no significant effect on the AOA community structure. PAHs may alter the abundance and community structure of ammonia-oxidizing microorganisms in a directed manner, which could macroscopically affect the ecological functions of nitrification in paddy fields.

References

1 Haritash A, Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review [J]. J Hazard Mater, 2009, 169 (1): 1-15
2 Li X, Li P, Lin X, Gong Z, Fan S, Zheng L, Verkhozina E. Spatial distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in soils from typical oil-sewage irrigation area, Northeast China [J]. Environ Monit Assess, 2008, 143 (1): 257-265
3 Shen H, Huang Y, Wang R, Zhu D, Li W, Shen G, Wang B, Zhang Y, Chen Y, Lu Y. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions [J]. Environ Sci Technol, 2013, 47 (12): 6415-6424
4 Moon HS, Kahng HY, Kim JY, Kukor JJ, Nam K. Determination of biodegradation potential by two culture-independent methods in PAH-contaminated soils [J]. Environ Pollut, 2006, 140 (3): 536-545
5 Xue W, Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review [J]. Toxicol Appl Pharm, 2005, 206 (1): 73-93
6 沈国清, 陆贻通, 洪静波. 重金属和多环芳烃复合污染对土壤酶活性的影响及定量表征[J]. 应用与环境生物学报, 2005, 11 (4): 479-482 [Shen GQ, Lu YT, Hong JB. Quantitative expression and effect of combined pollution of heavy metals and polycyclic acromatic hydrocarbons on soil enzyme [J]. Chin J Appl Environ Biol, 2005, 11 (4): 479-482]
7 Pilar J, Verónica M, Cristina D, Ora H, Ok-Sun K, Thomas J, Karl-Paul W, Imhoff JF. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment [J]. Appl Microbiol Biot, 2010, 85 (3): 425-440
8 刘志培, 刘双江. 硝化作用微生物的分子生物学研究进展[J]. 应用与环境生物学报, 2004, 10 (4): 521-525 [Liu ZQ, Liu JS. Advances in the molecular biology of nitrifying microorganisms [J]. Chin J Appl Environ Biol, 2004, 10 (4): 521-525]
9 Subrahmanyam G, Shen JP, Liu YR, Archana G, He JZ. Response of ammonia-oxidizing archaea and bacteria to long-term industrial effluent-polluted soils, Gujarat, Western India [J]. Environ Monit Assess, 2014, 186 (7): 4037-4050
10 Sipos A, Urakawa H. Differential responses of nitrifying archaea and bacteria to methylene blue toxicity [J]. Lett Appl Microbiol, 2016, 62 (2): 199-206
11 Wu Y, Zhu Q, Zeng J, Ding Q, Gong Y, Xing P, Lin X. Effects of pH and polycyclic aromatic hydrocarbon pollution on thaumarchaeotal community in agricultural soils [J]. J Soil Sediment, 2016, 16 (7): 1960-1969
12 Sverdrup LE, Ekelund F, Krogh PH, Nielsen T, Johnsen K. Soil microbial toxicity of eight polycyclic aromatic compounds: effects on nitrification, the genetic diversity of bacteria, and the total number of protozoans [J]. Environ Toxicol Chem, 2002, 21 (8): 1644-1650
13 刘杰. 土壤多环芳烃(PAHs)污染对氨氧化菌及微生物群落结构的影响研究[D]. 北京: 北京林业大学, 2011 [Liu J. The influence on ammonia oxidizing microorganisms and microbial community structure under soil pahs pollution [D]. Beijing: Beijing Forestry University, 2011]
14 Urakawa H, Garcia JC, Barreto PD, Molina GA, Barreto JC. A sensitive crude oil bioassay indicates that oil spills potentially induce a change of major nitrifying prokaryotes from the Archaea to the Bacteria [J]. Environ Pollut, 2012, 164: 42-45
15 Wang L, Li Y, Niu L, Zhang W, Zhang H, Wang L, Wang P. Response of ammonia oxidizing archaea and bacteria to decabromodiphenyl ether and copper contamination in river sediments [J]. Chemosphere, 2018, 191: 858-867
16 Barnier C, Ouvrard S, Robin C, Morel JL. Desorption kinetics of PAHs from aged industrial soils for availability assessment [J]. Sci Total Environ, 2014, 470 (2): 639-645
17 Guo M, Gong Z, Allinson G, Tai P, Miao R, Li X, Jia C, Zhuang J. Variations in the bioavailability of polycyclic aromatic hydrocarbons in industrial and agricultural soils after bioremediation [J]. Chemosphere, 2016, 144: 1513-1520
18 Maliszewska-Kordybach B, Klimkowicz-Pawlas A, Smreczak B, Janusauskaite D. Ecotoxic effect of phenanthrene on nitrifying bacteria in soils of different properties [J]. J Environ Qual, 2007, 36 (6): 1635-1645
19 Duan Y, Shen G, Tao S, Hong J, Chen Y, Xue M, Li T, Su S, Shen H, Fu X. Characteristics of polycyclic aromatic hydrocarbons in agricultural soils at a typical coke production base in Shanxi, China [J]. Chemosphere, 2015, 127: 64-69
20 Tao S, Cui Y, Xu F, Li B, Cao J, Liu W, Schmitt G, Wang X, Shen W, Qing B. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin [J]. Sci Total Environ, 2004, 320 (1): 11-24
21 孙剑英, 刘五星, 骆永明, 丁琳琳, 马婷婷, 黄玉娟, 徐旭士, 李振高. 气相色谱–质谱法测定含油污泥污染土壤中的多环芳烃[J]. 土壤, 2013, 45 (1): 111-115 [Sun JY, Liu WX, Luo YM, et al. Determination of PAHs in oily sludge-contaminated soil by gas chromatograph-mass spectrometry [J]. Soil, 2013, 45 (1): 111-115]
22 Hart SC, Stark JM, Davidson EA, Firestone MK. Nitrogen mineralization, immobilization, and nitrification [J]. Soil Sci Soc Am J, 1994 (2): 985-1018
23 Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK. Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils [J]. Appl Environ Microb, 2011, 77 (13): 4618-4625
24 Tourna M, Freitag T, Nicol G, Prosser J. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms [J]. Environ Microbiol, 2008, 10 (5): 1357-1364
25 Christopher A. Francis KJR, J. Michael Beman, Alyson E. Santoro, Brian B. Oakley. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean [J]. PNAS, 2005, 102 (41): 14683-14688
26 Nicolaisen MH, Ramsing NB. Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria [J]. J Microbiol Meth, 2002, 50 (2): 189-203
27 Zak JC, Willig MR, Moorhead DL, Wildman HG. Functional diversity of microbial communities: a quantitative approach [J]. Soil Biol Biochem, 1994, 26 (9): 1101-1108
28 许端平, 陈洪, 曹云者, 谷庆宝, 王宛华, 李发生. 多环芳烃菲在不同土壤及其组分中的吸附特征研究[J]. 农业环境科学学报, 2005, 24 (4): 625-629 [Xu DP, Chen H, Cao YZ, Gu QB, Wang WH, Li FS. Adsorption characteristics of polycyclic aromatic hydrocarbon phenanthrene on typical soils and their components [J]. J Agro-Environ Sci, 2005, 24 (4): 625-629]
29 包桂奇, 倪进治, 魏然, 杨柳明. 土壤不同有机质组分对菲的吸附特征研究[J]. 中国环境科学, 2013, 33 (5): 861-867 [Bao GQ, Ni JZ, Wei R, Yang LM, Liu M. Sorption characteristics of phenanthrene by different soil organic matter fractions [J]. China Environ Sci, 2013, 33 (5): 861-867]
30 邢维芹, 骆永明, 李立平. 影响土壤中PAHs降解的环境因素及促进降解的措施[J]. 土壤通报, 2007, 38 (1): 173-178 [Xing WQ, Luo YM, Li LP, Aromatic hydrocarbons in soil and measures for faster degradation a review [J]. Chin J Soil Sci, 2007, 38 (1): 173-178]
31 Pester M, Schleper C, Wagner M. The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology [J]. Curr Opin Microbiol, 2011, 14 (3): 300-306
32 Juhasz AL, Naidu R. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo [a] pyrene [J]. Int Biodeter Biodegr, 2000, 45 (1-2): 57-88
33 Kurola J, Salkinoja-Salonen M, Aarnio T, Hultman J, Romantschuk M. Activity, diversity and population size of ammonia-oxidising bacteria in oil-contaminated landfarming soil [J]. FEMS Microbiol Lett, 2005, 250 (1): 33-38
34 Peltola R, Salkinoja-Salonen M, Pulkkinen J, Koivunen M, Turpeinen A-R, Aarnio T, Romantschuk M. Nitrification in polluted soil fertilized with fast- and slow-releasing nitrogen: A case study at a refinery landfarming site [J]. Environ Pollut, 2006, 143 (2): 247-253
35 Thavamani P, Malik S, Beer M, Megharaj M, Naidu R. Microbial activity and diversity in long-term mixed contaminated soils with respect to polyaromatic hydrocarbons and heavy metals [J]. J Environ Manage, 2012, 99: 10-17
36 Griebler C, Safinowski M, Vieth A, Richnow HH, Meckenstock RU. Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer [J]. Environ Sci Technol, 2004, 38 (2): 617-631
37 Kucharski J, Tomkiel M, Boros E, Wyszkowska J. The effect of soil contamination with diesel oil and petrol on the nitrification process [J]. J Elementol, 2010, 15 (1): 111-118
38 Han X, Cheng C, Duan Q, Wang H, Li X, Wei D, Zhang R, Li H. The effects of agricultural wastes on degradation of pahs and abundance of ammonia-oxidizing bacteria and archaea in soils [J]. ISM3E, 2015: 308-311
39 Dokianakis S, Kornaros M, Lyberatos G. Impact of five selected xenobiotics on isolated ammonium oxidizers and on nitrifying activated sludge [J]. Environ Toxicol, 2006, 21 (4): 310-316
40 Tran NH, Urase T, Ngo HH, Hu J, Ong SL. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants [J]. Bioresource Technol, 2013, 146 (10): 721-731
41 Chen XP, Zhu YG, Xia Y, Shen JP, He JZ. Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? [J]. Environ Microbiol, 2008, 10 (8): 1978-1987
42 Men Y, Han P, Helbling DE, Jehmlich N, Herbold C, Gulde R, Onnis-Hayden A, Gu AZ, Johnson DR, Wagner M, Fenner K. Biotransformation of two pharmaceuticals by the ammonia-oxidizing archaeon nitrososphaera gargensis [J]. Environ Sci Technol, 2016, 50 (9): 4682-4692
43 Tourna M, Stieglmeier M, Spang A, K?nneke M, Schintlmeister A, Urich T, Engel M, Schloter M, Wagner M, Richter A. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil [J]. P Natl Acad Sci, 2011, 108 (20): 8420-8425
44 Khunjar W, Mackintosh S, Skotnicka-Pitak J, Baik S, Aga D, Love N. Elucidating the relative roles of ammonia oxidizing and heterotrophic bacteria during the biotransformation of 17α-ethinylestradiol and trimethoprim [J]. Environ Sci Technol, 2011, 45 (8): 3605-3612
45 Roh H, Subramanya N, Zhao F, Yu C-P, Sandt J, Chu K-H. Biodegradation potential of wastewater micropollutants by ammonia-oxidizing bacteria [J]. Chemosphere, 2009, 77 (8): 1084-1089
46 Chang SW, Hyman MR, Williamson KJ. Cooxidation of naphthalene and other polycyclic aromatic hydrocarbons by the nitrifying bacterium, Nitrosomonas europaea [J]. Biodegradation, 2002, 13 (6): 373-381

Memo

Memo:
-
Last Update: 2019-06-25