|Table of Contents|

A comparative study of morphology and growth traits between Phragmites australis and Imperata cylindrica under varying ground water table in the coastal wetland of Yangtze River Estuary(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2016 06
Page:
986-992
Research Field:
Publishing date:

Info

Title:
A comparative study of morphology and growth traits between Phragmites australis and Imperata cylindrica under varying ground water table in the coastal wetland of Yangtze River Estuary
Author(s):
QI Zhiwei1 2 GAO Yanna1 2 LI Shasha1 2 FAN Tong1 2 GUAN Tong1 WANG Kaiyun1 2** & ZHANG Chao3
1School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China 2Shanghai Key Lab for Urban Ecological Process and Eco-Restoration, Shanghai 200241, China 3College of Geographical Science, East China Normal University, Shanghai 200241, China
Keywords:
coastal wetland Phragmites australis Imperata cylindrica water table management competition
CLC:
Q148
PACS:
DOI:
10.3724/SP.J.1145.2016.04010
DocumentCode:

Abstract:
Phragmites australis is a constructive species in the tidal wetland in the Yangtze Estuary of China. Imperata cylindrica, a typical perennial mesophyte, is currently spreading wetlands previously dominated by the reed population and changing the structure and function of native ecosystem. Soil ground water table could affect soil physical, chemical and biogeochemical characters, which in turn influence the morphology and growth of P. australis and I. cylindrica. How to control the spread of I. cylindrica and maintain native community becomes one of the key problems for the wetland management. The relationship between the morphology and growth of P. australis and I. cylindrica and ground water table was investigated by using one-way ANOVA and Pearson correlative analysis in order to find how reed and Cogongrass respond to changes of ground water table in coastal wetland at the shoot level and at the population level. The investigation found that the rise of ground water table improved the population density but no otherwise obvious effects P. australis seedlings. The population density of I. cylindrica seedlings decreased with the rise of ground water table. At the shoot level, plant height, stem diameter, leaf area, aboveground biomass and relative growth rates of P. australis were significantly higher at middle water table than at low and high water tables. Besides plant height and base diameter, other morphological and growth traits of I. cylindrica showed no significant differences at the three ground water tables. At the population level, the population density, leaf area index, leaf biomass, stem biomass and aboveground biomass of P. australis increased with the ground water table, while those of I. cylindrica decreased. Although the growth of I. cylindrica was worse than P. australis at the shoot level, I. cylindrica spread rapidly throughout the reed population by strong agamogenesis ability, especially at low ground water table. Therefore a higher wetland ground water table at the early stage of the growing season may inhibit the growth of mesophyte I. cylindrica, and benefit the restoration of structure and function of P. australis-dominated wetland community.

References

1 巩晋楠, 王开运, 张超, 马永亮. 围垦滩涂湿地旱生耐盐植物的入侵和影响[J]. 应用生态学报, 2009, 20 (1): 33-39 [Gong JN, Wang KY, Zhang C, M YL. Invasion and its effects of xerarch halophytes in reclaimed tidal wetlands [J]. Chin J Appl Ecol, 2009, 20 (1): 33-39] 2 彭恒, 桂富荣, 李正跃, 李隽, 万方浩. 白茅对紫茎泽兰的竞争效应[J]. 生态学杂志, 2010, 29 (10): 1931-1936 [Peng H, Gui FR, Li ZY, Li J, Wan FH. Competition effect of Imperata cylindrica to Ageratina adenophora [J]. Chin J Ecol, 2010, 29 (10): 1931-1936] 3 仲启铖, 王江涛, 周剑虹, 欧强, 王开运. 地下水位调控对崇明东滩围垦区滩涂湿地芦苇和白茅光合、形态及生长的影响[J]. 应用生态学报, 2014, 25 (2): 408-418 [Zhong QC, Wang JT, Zhou JH, Ou Q, Wang KY. Effects of ground water table manipulation on leaf photosynthesis, morphology and growth of Phragmites australis and Imperata cylindrica in the reclaimed tidal wetland at Dongtan of Chongming Island, China [J]. Chin J Appl Ecol, 2014, 25 (2): 408-418] 4 Daneshgar P, Jose S, Collins A, Ramsey C. Cogongrass (Imperata cylindrica), an alien invasive grass, reduces survival and productivity of an establishing pine forest [J]. For Sci, 2008, 54 (6): 579-587 5 谭学界, 赵欣胜. 水深梯度下湿地植被空间分布与生态适应[J]. 生态学杂志, 2006, 25 (12): 1460-1464 [Tan XJ, Zhao XS. Spatial distribution and ecological adaptability of wetland vegetation in Yellow River Delta along a ground water depth gradient [J]. Chin J Ecol, 2006, 25 (12): 1460-1464] 6 崔保山, 赵欣胜, 杨志峰, 唐娜, 谭学界. 黄河三角洲芦苇种群特征对水深环境梯度的响应[J]. 生态学报, 2006, 26 (5): 1533-1541 [Cui BS, Zhao XS, Yang ZF, Tang N, Tan XJ. The response of reed community to the environment gradient of water depth in the Yellow River Delta [J]. Acta Ecol Sin, 2006, 26 (5): 1533-1541] 7 徐治国, 何岩, 闫百兴, 任慧敏. 营养物及水位变化对湿地植物的影响[J]. 生态学杂志, 2006, 25 (1): 87-92 [Xu ZG, He Y, Yan BX, Ren HM. Effects of nutrients and water level fluctuation on wetland plants [J]. Chin J Ecol, 2006, 25 (1): 87-92] 8 Zhen L, Yoshiki S, Limi M, Toru T, Zhen L, Bing S, Yulan Z, Anqing L, Sotham S, Jie L. Mid-Holocene mangrove succession and its response to sea-level change in the upper Mekong River delta, Cambodia [J]. Quat Res, 2012, 78 (2): 386-399 9 杨淑慧, 祁秋艳, 仲启铖, 张超, 王开运. 崇明东滩围垦湿地芦苇光合作用对模拟升温的响应初探[J]. 长江流域资源与环境, 2012, 21 (5): 604-610 [Yang SH, Qi QY, Zhong QC, Zhang C, Wang KY. Responses of the photo-synthesis of reclamation Phragmites australis in eastern Chongming Island on elevated temperature [J]. Resour Environ Yangtze Basin, 2012, 21 (5): 604-610 10 赵可夫. 植物对水涝胁迫的适应[J]. 生物学通报, 2003 (12): 11-14 [Zhao KF. Adaptation of plants to waterlogged stress [J]. Bull Boil, 2003 (12): 11-14] 11 庄瑶, 孙一香, 王中生, 杨琳璐, 邓自发, 姚志刚, 安树青. 芦苇生态型研究进展[J]. 生态学报, 2010, 30 (8): 2173-2181 [Zhuang Y, Sun YX, Wang ZS, Yang LL, Deng ZF, Yao ZG, An SQ. Research advances in ecotypes of Phragmites australis [J]. Acta Ecol Sin, 2010, 30 (8): 2173-2181] 12 王俊峰, 冯玉龙. 光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响[J]. 植物生态学报, 2004, 28 (6): 781-786 [Wang JF, Feng YL. The effect of light intensity on biomass allocation, leaf morphology and relative growth rate of two invasive plants [J]. Acta Phytoecol Sin, 2004, 28 (6): 781-786] 13 娇杨, 厉恩华, 蔡晓斌, 王智, 王学雷. 湿地植物对水位变化的响应研究进展[J]. 湿地科学, 2014, 12 (6): 6-13 [Jiao Y, Li EH, Cai XB, Wang Z, Wang XL. Research progress in response of plants in wetlands to water level change [J]. Wetl Sci, 2014, 12 (6): 6-13] 14 许秀丽, 张奇, 李云良, 谭志强, 王晓龙. 鄱阳湖洲滩芦苇种群特征及其与淹水深度和地下水埋深的关系[J]. 湿地科学, 2014, 12 (6): 714-722 [Xu XL, Zhang Q, Li YL, Tang ZQ, Wang XL. Reed population features and relationships between feature indicators and flooding depth, groundwater depth in an Islet in Poyang Lake [J]. Wetl Sci, 2014, 12 (6): 714-722] 15 Mauchamp A, Blanch S, Grillas P. Effects of submergence on the growth of Phragmites australis seedlings [J]. Aqu Bot, 2001, 69 (2): 147-164 16 冷琴, 杨雅玲. 国产白茅属 Imperata Cyrillo(禾本科)部分生物学特性的研究[J]. 南京大学学报(自然科学), 2002, 38 (5): 703-715 [Leng Q, Yang YL. Major biological characters of Imperata cyrillo (Poaceae) from China [J]. J Nanjing Univ (Nat Sci), 2002, 38 (5): 703-715] 17 King SE, Grace JB. The effects of soil flooding on the establishment of cogongrass (Imperata cylindrica), a nonindigenous invader of southeastern United States [J]. Wetlands, 2000, 20 (2): 300-306 18 仲启铖. 温度和水位对滨海围垦湿地碳过程的影响——以崇明东滩为例[D]. 上海: 华东师范大学, 2014 [Zhong QC. The Effects of temperature and ground water on the carbon processes in coastal reclaimed wetland: a case study at Dongtan of Chongming Island [D]. Shanghai: East China Normal University, 2014] 19 杨允菲, 李建东. 松嫩平原不同生境芦苇种群分株的生物量分配与生长分析[J]. 应用生态学报, 2003, 14 (1): 30-34 [Yang YF, Li JD. Biomass allocation and growth analysis on the ramets of Phragmites communis populations in different habitats in the Songnen Plains of China [J]. Chin J Appl Ecol, 2003, 14 (1): 30-34] 20 Poorter H, Nagel O. The role of biomass allocation in the growth response of plants to different levels of light, CO2: nutrients and water: a quantitative review [J]. Aust J Plant Physiol, 2000, 27 (6): 595-607 21 Hermans C, Hammond JP, White PJ, Verbruggen N. How do plants respond to nutrient shortage by biomass allocation [J]. Trends Plant Sci, 2006, 11 (12): 610-617 22 毕作林, 熊雄, 路峰, 贺强, 赵欣胜. 黄河三角洲湿地芦苇种群水深生态幅研究[J]. 山东林业科技, 2007 (4): 1-3 [Bi ZL, Xiong X, Lu F, He Q, Zhao XS. Studies on ecological amplitude of reed to the environmental gradient of water depth [J]. Shandong For Sci Technol, 2007 (4): 1-3] 23 Macdonald GE. Cogongrass (Imperata cylindrica)—biology, ecology, and management [J]. Crit Rev Plant Sci, 2004, 23 (5): 367-380 24 高芳磊, 王浩东, 郭宏宇, 马成仓. 盐地碱蓬和芦苇苗期的竞争作用[J]. 湿地科学, 2015, 13 (5): 582-586 [Gao FL, Wang HD, Guo HY, Ma CC. Competition between Seedlings of Suaeda salsa and Phragmites australis [J]. Wetl Sci, 2015, 13 (5): 582-586]

Memo

Memo:
-
Last Update: 2016-12-30