|Table of Contents|

Physiological characteristics and systematic classification of the Zoogloea species and their role in the activated sludge(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2016 06
Research Field:
Publishing date:


Physiological characteristics and systematic classification of the Zoogloea species and their role in the activated sludge
AN Weixing1 2 GAO Na1 2 XIA Ming1 2 DAI Jingcheng1 YU Dianzhen1 2 & QIU Dongru1**
1Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China 2University of Chinese Academy of Sciences, Beijing 100049, China
activated sludge process zoogloea floc Zoogloea systematic classification wastewater treatment extracellular polymeric substance

Microbes are the key issue in the study of activated sludge (AS) process. The genomic and metagenomic analyses of AS have greatly improved our understanding of activated sludge microbes, demonstrating the predominance of Zoogloea species in the AS microbial communities. In this paper we summarized the taxonomy history and systematic classification of Zoogloea genus, and strongly recommended that the taxa including Z. filipendula Berger, Z. ramigera ATCC 19623 and Z. ramigera ATCC 25935 should be discarded because they are either taxonomically invalid or no longer regarded as members of Zoogloea genus. Furthermore, we also introduced based on available data the characteristics of Zoogloea species, their role in activated sludge process, the chemical structure and properties of extracellular polymeric substances (EPS) and the genetic breeding and screening for desirable strains. Recently two draft genomes of Z. resiniphila had been analyzed and a large extracellular polysaccharide biosynthesis gene cluster had been found to be required for floc formation. We put forward that more attention should be paid to molecular genetics and functional genomics of Zoogloea and related floc-forming bacteria, the mechanisms underlying the biosynthesis of EPS and floc formation, as well as the chemical structures and properties of various EPS.


1 Ardern E, Lockett WT. Experiments on the oxidation of sewage without the aid of filters [J]. J Soc Chem Ind, 1914, 33 (10): 523-539 2 Keller J, Yuan Z, Blackall LL. Integrating process engineering and microbiology tools to advance activated sludge wastewater treatment research and development [J]. Rev Environ Sci Biotechn, 2002, 1 (1): 83-97 3 冯权, 邢新会, 刘则华. 以剩余污泥减量化为目标的废水生物处理技术研究进展[J]. 化工进展, 2004, 23 (8): 832-836 [Feng Q, Xing XH, Liu ZH. Mini review on wastewater treatment technology aimed at minimization of excess sludge [J]. Chem Ind Eng Progr, 2004, 23 (8): 832-836] 4 何健, 李顺鹏, 崔中利, 陈立伟, 顾向阳. 含盐工业废水生化处理耐盐污泥驯化及其机制[J]. 中国环境科学, 2002, 22 (6): 546-550 [He J, Li SP, Cui ZL, Chen LW, Gu XY. Industrial hypersaline wastewater biochemical treatment of salt-tolerant sludge acclimation and its mechanisms. [J]. China Environ Sci, 2002, 22 (6): 546-550] 5 Moreno-Andrade I, Buitrón G. Variation of the microbial activity during the acclimation phase of a SBR system degrading 4-chlorophenol [J]. Sequenc Batch React Techn III, 2004, 50 (10): 251-258 6 李文兰, 杨玉楠, 季宇彬, 于蕾, 范玉奇. 驯化活性污泥对邻苯二甲酸丁基苄酯的降解[J]. 环境科学, 2005, 26 (4): 156-159 [Li WL, Yang YN, Ji YB, Yu L, Fan YQ. Biodegradation of butylbenzyl phthalate by acclimated activated sludge [J]. Environ Sci (China), 2005, 26 (4): 156-159] 7 Xie B, Kang K S. Uptake of copper ion by activated sludge and its bacterial community variation analyzed by 16S rDNA [J]. J Environ Sci (China), 2003, 15 (3): 328-333 8 王硕, 于水利, 徐巧, 付强, 李激. 好氧颗粒污泥特性、应用及形成机理研究进展[J]. 应用与环境生物学报, 2014, 20 (4): 732-742 [Wang S, Yu S, Xu Q, Fu Q, Li J. Characteristics, application and formation mechanisms of aerobic granular sludge: recent advances [J]. China J Appl Environ Biol, 2014, 20 (4): 732-742] 9 Xu J, Sheng GP, Ma Y, Wang LF, Yu HQ. Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system [J]. Water Res, 2013, 47 (14): 5298-5306 10 Guo F, Zhang T. Profiling bulking and foaming bacteria in activated sludge by high throughput sequencing [J]. Water Res, 2012, 46 (8): 2772-2782 11 Amanatidou E, Samiotis G, Trikoilidou E, Pekridis, G, Taousanidis N. Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time [J]. Water Res, 2015, 69: 20-29 12 McIlroy SJ, Karst SM, Nierychlo M, Dueholm MS, Albertsen M, Kirkegaard RH, Seviour RJ, Nielsen PH?. Genomic and in situ investigations of the novel uncultured Chloroflexi associated with 0092 morphotype filamentous bulking in activated sludge [J]. ISME J, 2016, 10 (9): 2223-2234 13 Mudaly D, Atkinson B, Bux F. 16S rRNA in situ probing for the determination of the family levelcommunity structure implicated in enhanced biological nutrient removal [J]. Water Sci Technol, 2000, 43 (1): 91-98 14 陈国科, 黄钧, 毕京芳, 关梦龙. 好氧颗粒污泥耐受高碳氮负荷过程中的群体感应[J]. 应用与环境生物学报, 2014, 20 (1): 73-79 [Chen GK, Huang J, Bi JF, Guan ML. Quorum sensing of aerobic granular sludge tolerating high carbon and nitrogen loads [J]. China J Appl Environ Biol, 2014, 20 (1): 73-79 15 Gentile ME, Jessup CM, Nyman JL, Criddle CS. Correlation of functional instability and community dynamics in denitrifying dispersed-growth reactors [J]. Appl Environ Microbiol, 2007, 73 (3): 680-690 16 Dias FF, Bhat JV. Microbial ecology of activated sludge I. Dominant bacteria [J]. Appl Microbiol, 1964, 12 (5): 412-417 17 Rosselló-Mora RA, Wagner M, Amann R, Schleifer KH. The abundance of Zoogloea ramigera in sewage treatment plants [J]. Appl Environ Microbiol, 1995, 61 (2): 702-707 18 Zhang T, Shao MF, Ye L. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants [J]. ISME J, 2012, 6 (6): 1137-1147 19 Wang X, Hu M, Xia Y, Wen XH., Ding K. .Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China [J]. Appl Environ Microbiol, 2012, 78 (19): 7042-7047 20 洪安安, 刘德华, 刘灿明. 活性污泥的主要微生物菌群及研究方法[J]. 工业水处理, 2009, 29 (2): 10-14 [Hong AA, Liu DH, Liu CM. Main microbial community in activated sludge and the research method of it [J]. Ind Water Treatm, 2009, 29 (2): 10-14 21 彭永臻, 郭建华. 活性污泥膨胀机理、成因及控制[M]. 北京: 科学出版社, 2012: 40 22 Liu Y, Zhang T, Fang HHP. Microbial community analysis and performance of a phosphate-removing activated sludge [J]. Biores Technol, 2005, 96 (11): 1205-1214 23 Liu B, Zhang F, Feng X, Liu Y, Yan X, Zhang X, Wang L, Zhao L. Thauera and Azoarcus as functionally important genera in a denitrifying quinoline-removal bioreactor as revealed by microbial community structure comparison [J]. FEMS Microbiol Ecol, 2006, 55 (2): 274-286 24 Wells GF, Park HD, Yeung CH, Eggleston B, Francis CA, Criddle CS. Ammonia-oxidizing communities in a highly aerated full-scale activated sludge bioreactor: Betaproteobacterial dynamics and low relative abundance of Crenarchaea[J] Environ Microbiol, 2009, 11 (9): 2310-2328 25 Wagner M, Loy A. Bacterial community composition and function in sewage treatment systems [J]. Curr Opin Biotechnol, 2002, 13 (3): 218-227 26 Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Tillson HB, Pfannkoch C, Rogers YH, Smith HO. Environmental genome shotgun sequencing of the Sargasso Sea [J]. Sci, 2004, 304 (5667): 66-74 27 Kong Y, Nielsen JL, Nielsen PH. Microautoradiographic study of Rhodocyclus-related polyphosphate-accumulating bacteria in full-scale enhanced biological phosphorus removal plants [J]. Appl Environ Microbiol, 2004, 70 (9): 5383-5390 28 Kong Y, Xia Y, Nielsen P H. Activity and identity of fermenting microorganisms in full-scale biological nutrient removing wastewater treatment plants [J]. Environ Microbiol, 2008, 10 (8): 2008-2019 29 Oehmen A, Carvalho G, Lopez-Vazquez CM, Van Loosdrecht MCM, Reis MAM. Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulating organisms and glycogen accumulating organisms [J]. Water Res, 2010, 44 (17): 4992-5004 30 Mino T, Liu WT, Kurisu F, Matsuo T. Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes [J]. Water Sci Technol, 1995, 31 (2): 25-34 31 Jenkins D, Richard MG, Daigger GT. Manual on the Causes and Control of Activated Sludge Bulking and Foaming. 2nd ed. Washington: Lewis, 1993 32 Wanner J. Activated Sludge: Bulking and Foaming Control [M]. Lancaster: CRC Press, 1994 33 Zvirbulis E, Hatt H D. Status of the generic name Zoogloea and its species: An Aid to the Formulation of an Opinion [J]. Int J Syst Bacteriol, 1967, 17 (1): 11-21 34 Butterfield CTA. Zoogloea-forming bacterium isolated from activated sludge, studies of sewage purification (II) [J]. Publ Health Rep, 1935, 50: 671-681 35 布坎南 RE,吉本斯 NE. 伯杰细菌鉴定手册[M]. 北京: 科学出版社, 1984: 323-325 [Buchanan RE, Gibbons NE. Bergey?s Manual of Determinative Bacteriology [M]. Beijing: The Science Publishing Company, 1984: 323-325] 36 Crabtree K, McCoy E. Zoogloea ramigera Itzigsohn, identification and description [J]. Int J Syst Bacteriol, 1967, 17 (1): 1-10 37 Friedman BA, Dugan PR. Identification of Zoogloea species and the relationship to zoogloeal matrix and floc formation [J]. J Bacteriol, 1968, 95 (5): 1903-1909 38 Unz RF. Neotype strain of Zoogloea ramigera Itzigsohn Request for an opinion [J]. Int J Syst Bacteriol, 1971, 21 (1): 91-99 39 Hiraishi A, Shin YK, Sugiyama J. Proposal to reclassify Zoogloea ramigera IAM 12670 (PR Dugan 115) as Duganella zoogloeoides gen. nov., sp. nov. [J]. Int J Syst Bacteriol, 1997, 47 (4): 1249-1252 40 An DS, Im WT, Yang HC, Lee ST. Shinella granuli gen. nov., sp. nov., and proposal of the reclassification of Zoogloea ramigera ATCC 19623 as Shinella zoogloeoides sp. nov. [J]. Int J Syst Evolution Microbiol, 2006, 56 (2): 443-448 41 Xie CH, Yokota A. Zoogloea oryzae sp. nov., a nitrogen-fixing bacterium isolated from rice paddy soil, and reclassification of the strain ATCC 19623 as Crabtreella saccharophila gen. nov., sp. nov [J]. Int J Syst Evolution Microbiol, 2006, 56 (3): 619-624 42 Mohn WW. Bacteria obtained from a sequencing batch reactor that are capable of growth on dehydroabietic acid [J]. Appl Environ Microbiol, 1995, 61 (6): 2145-2150 43 Shao Y, Chung BS, Lee SS, Park, W, Lee SS, Jeon CO. Zoogloea caeni sp. nov., a floc-forming bacterium isolated from activated sludge [J]. Int J Syst Evol Microbiol, 2009, 59 (3): 526-530 44 Farkas M, Táncsics A, Kriszt B, Benedek T, Tóth EM, Kéki Z., Veres PG., Szoboszlay S. Zoogloea oleivorans sp. nov., a floc-forming, petroleum hydrocarbon-degrading bacterium isolated from biofilm [J]. Int J Syst Evolut Microbiol, 2015, 65 (Pt 1): 274-279 45 Lu F, Lukasik J, Farrah SR. Immunological methods for the study of zoogloea strains in natural environments [J]. Water Res, 2001, 35 (17): 4011-4018 46 季爱云, 崔志芳, 李春露, 刘娜. 生物可降解塑料聚 β-羟基丁酸酯产生菌的选育[J]. 塑料, 2010, 39 (3): 100-103 [Ji AY, Cui ZF, Li CL, Liu N. Breeding of producing strains of the biodegradable plastic——poly-β-hydroxybutyrate [J]. Plast, 2010, 39 (3): 100-103] 47 Yang JS, Huang JX, Ni JR. Mathematical modeling of the batch fermentation of Zoogloea sp. GY3 used for synthesizing polyhydroxyalkanoates [J]. J Chem Technol Biotechnol, 2006, 81 (5): 789-793 48 Koller M, Salerno A, Dias M, Reiterer A, Braunegg G. Modern biotechnological polymer synthesis: a review [J]. Food Technol Biotechnol, 2010, 48 (3): 255-269 49 Friedman BA, Dugan PR. Identification of Zoogloea species and the relationship to zoogloeal matrix and floc formation [J]. J Bacteriol, 1968, 95 (5): 1903-1909 50 Dugan PR, Stoner DL, Pickrum HM. The Genus Zoogloea [M]//The Prokaryotes. New York: Springer, 2006: 960-970 51 薛念涛, 潘涛, 纪玉琨. 好氧、厌氧、兼氧污水处理技术的原理——兼谈水解酸化工艺的研发[J]. 环境工程, 2015, 33 (Suppl): 43-48 [Xue NT, Pan T, Ji YK. Principles of aerobic, anaerobic, and facultative technologies for sewage treatment: development of the hydrolysis acidification [J]. Environ Eng, 2015, 33 (Suppl): 43-48 52 黄丽萍, 周集体, 腾丽曼. 动胶菌 HP3 对芳香化合物的降解及取代基效应分析[J]. 辽宁师范大学学报: 自然科学版, 2003, 26 (3): 286-289[Huang LP, Zhou JT, Teng LM. Effects on biodegradation of aromatic compounds by Zoogloea itzigohn HP3 and analysis of substitute groups [J]. J Liaoning Norm Univ (Nat Sci Ed), 2003, 26 (3): 286-289] 53 Li P, Wang X, Stagnitti F, Li L., Gong Z, Zhang H., Austin C. Degradation of phenanthrene and pyrene in soil slurry reactors with immobilized bacteria Zoogloea sp. [J]. Environ Eng Sci, 2005, 22 (3): 390-399


Last Update: 2016-12-30