|Table of Contents|

A PCR-DGGE study of bacteria community diversity in the constructed wetland treated with agricultural return flow(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2016 06
Research Field:
Publishing date:


A PCR-DGGE study of bacteria community diversity in the constructed wetland treated with agricultural return flow
WU Wenwei1 2 LIU Ang1 GU Zhaohu1 XU Huini1 ZHAO Lei2 CHEN Xunqin1 CHEN Limei1 & LI Kunzhi1**
1College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China 2Yunan Institute of Environmental Science, Kunming 650034, China
constructed wetland diversity of bacteria community PCR-DGGE agricultural return flow Canna indica
X172 : X703

This research aimed to understand the similarities and differences of microbial community structure of the constructed wetlands with different plants as well as the dominant flora in the wetlands. The matrix (molecular sieves, ceramsite and gravel) and surface water samples were taken from the integrated vertical flow constructed wetland (MIL) system with Canna indica and Cyperus alternifolius, and soil samples taken from surface flow wetland. The samples were treated with agricultural return flow and analyzed by PCR-DGGE. The results showed 12 to 14 bands of OTUs of the stone matrix and water samples from the upper of the up-flow pool in MIL system and the soil samples from surface flow wetland in all three treatments, which indicated great number of microorganisms species and high microbial diversity. The dominant flora were uncultured Xylella sp., uncultred bacterium, uncultured Tolumones sp. and Acidovorax. The OTU numbers of ceramsite and molecular sieve were slightly higher in the MIL systems pool planted with C. alternifolius and the blank control (6-11 bands) than in the systems planted with C. indica (4 to 5 bands), showing the less species and lower microbial diversity in the latter. The dominant flora were uncultured Xylella sp., uncultured soil bacterium and uncultured Sphingomon adacsas. These results indicated that the integrated vertical flow constructed wetland system planted with canna could enhance the reduction in the base matrix and decrease the bacterial diversity, beneficial for the removal of nitrate nitrogen.


1 姜翠玲, 崔广柏. 湿地对农业非点源污染的去除效应[J]. 农业环境保护, 2002, 21 (5): 471-473, 476 [Jiang CL, Cui GB. Effectiveness of wetlands in removal of non-point pollutants from agricultural source [J]. Agro-environ Prot, 2002, 21 (5): 471-473, 476] 2 Brix H. Functions of macro Phytes in constructed wetlands [J]. Wat Sci Technol, 1994, 29 (6): 71-78 3 Brix H. Use of constructed wetland in water pollution control: Historical development, present status, and future perspectives [J]. Wat Sic Technol, 1994, 30 (8): 209-223 4 刘开朗, 王加启, 卜登攀, 李旦, 于萍, 赵圣国. 环境微生物群落结构与功能多样性研究方法[J]. 生态学报, 2010, 30 (4): 1074-1080 [Liu KL, Wang JQ, Bu DP, Li D, Yu Z, Zhao SG. Currrent progress in approaches to the study of structure and function diversities of environmental microbial communities [J]. Acta ecol Sin, 2010, 30 (4): 1074-1080] 5 刘银银, 李峰, 孙庆业, 谢永宏. 湿地生态系统土壤微生物研究进展[J]. 应用与环境生物学报, 2013, 19 (3): 547-552 [Liu YY, Li F, Sun QY, Xie YH. Review on the study of soil microorganisms in wetland ecosystems [J]. Chin J Appl Environ Biol, 2013, 19 (3): 547-552 6 Fischer SG, Lerman LS. DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory [J]. Proc Nat Acad Sci USA, 1983, 80 (6): 1579-1583 7 Muyzer G, Waal de EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplyfied genes coding for 16S rRNA [J]. Appl Environ Microbiol, 1993, 59 (3): 695-700 8 朱砺之, 黄娟, 傅大放. 人工湿地生态系统中的微生物作用及PCR-DGGE技术的应用[J]. 安全与环境工程, 2012, 19 (2): 26-30 [Zhu LZ, Huang J, Fu DF. Microbial action of constructed wetland ecosystem and the application of PCR-DGGE technology. Saf Environ Eng, 2012, 19 (2): 26-30] 9 黄德锋, 李田, 陆斌. 复合垂直流人工湿地污染物去除及微生物群落结构的PCR-DGGE分析[J]. 环境科学研究, 2007, 20 (6): 137-141 [Huang DF, Li T, Lu B. Pollutants removal and analysis of structure changes of microbial community in integrated vertical-flow constructed wetland [J]. Res Environ Sci, 2007, 20 (6): 137-141] 10 Calheiros CSC, Teixeira A, Pires C, Franco AR, Duue AF, Crispim LFC, Moura SC, Castro PML. Bacterial of community dynamics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater [J]. Water Res, 2010, 44: 5032-5038 11 Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition [J]. Appl Environ Microbiol, 1996, 62 (2): 316-322 12 Hannen EJV, Zwart G, Agterveld MPV, Gons HJ, Ebert JLaanbroek HJ. Change in Bacterial and Eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with virus [J]. Appl Environ Microbiol, 1999, 65: 795-801 13 苏俊峰, 马放, 王弘宇, 侯宁, 高珊珊, 王强. 利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物群落动态[J]. 环境科学学报, 2007, 27 (3): 386-390 [Su JF, Ma F, Wang HY, Hou N, Gao SS, Wang Q. Application of PCR-DGGE to resolve microbial diversity in bio-ceramic reactor[J]. Acta Sci Circumst, 2007, 27 (3): 386-390] 14 陈法霖, 张凯, 郑华, 林学强, 欧阳志云, 屠乃美. PCR-DGGE技术解析针叶和阔叶凋落物混合分解对土壤微生物群落结构的影响[J]. 应用与环境生物学报, 2011, 17 (2): 145-150 [Chen FL, Zhang K, Zheng H, Lin XQ, Ou YZQ, Tu NM. Analyzing the effect of mixed decomposition of conifer and broadleaf litters on soil microbial communities by using PCR-DGGE [J]. Chin J Appl Environ Biol, 2011, 17 (2): 145-150] 15 Brock TD. The study of microorganisms in situ: Progress and Problem [J]. Symp Soc Gene Microbiol, 1987, 41: 1-17 16 姜昕, 马鸣超, 李俊, 李力, 钟左燊. 用DGGE技术分析污水人工快速渗滤系统中微生物种群分布[J]. 微生物学通报, 2007, 34: 1179-1184 [Jiang X, Ma MC, Li J, Li L, Zhong ZS. Analysis of microbial community distribution in Constructed Rapid Infiltrition System (CRI) by DGGE. Microbiol China, 2007, 34: 1179-1184]


Last Update: 2016-12-30