|Table of Contents|

Rresearch progress on the homeostasis adjustment mechanisms of coral symbiotic bacteria(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2020 04
Research Field:
Publishing date:


Rresearch progress on the homeostasis adjustment mechanisms of coral symbiotic bacteria
LIN Zijun1 2 DU Xiaopeng2 ZENG Yanhua2 CAI Zhonghua2 & ZHOU Jin2?
1 Department of Earth Sciences, Tsinghua University, Beijing 100084, China 2 Ocean Science and Technology Division, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
coral holobiont carbon concentrated mechanism signal regulation homeostasis mechanism

The excellent ecological value of coral reefs results from the stability and health of the symbiotic system, and the balance and stability of the “coral-bacteria” holobiont is an important cornerstone of healthy coral reefs. The regulation mechanisms of holobiont have been thoroughly investigated over the past decade, and important insights into the relationships among the “microorganism-host-environment” have been reported. However, the symbiotic system is complex, so the steady-state adjustment mechanisms of holobiont are not one-dimensional. Under multiple environmental pressures, the ecological behavior of holobiont is complex and variable, some basic theories lack a general consensus. In this review, we summarize the latest research progress, including the composition of the symbiotic microorganisms, the influence of the environmental factors on the coral-associated bacteria, and the steady-state regulation types under multiple pressures (e.g., increased pollution, rising water temperature, and increased human activity). The main contents include the carbon-concentrated mechanisms, host preference for their associated bacteria, nutrition regulation, and homeostasis adjustment mechanisms of the coral symbiotic bacteria under quorum sensing. Also, the molecular mechanisms of coral holobiont homeostasis, such as pH steady-state calcification, energy metabolism, oxidative stress, and the response of the cytochrome P450 family genes, are summarized. Finally, we define the research issues and possible future directions, including additional archaeal research in coral holobiont using new methods (e.g., Raman spectroscopy coupled with “omics” or nano time-of-flight mass spectrometry) and the construction of ecological models. This review sought to improve our understanding of the interactions among corals, microorganisms, and the environment. The information presented here allows a better understanding of the microecological mechanisms of symbiosis and provides a theoretical reference for coral reef protection.


1 Baker AC, Starger CJ, Mcclanahan TR, GlynnPW. Corals’ adaptive response to climate change: Shifting to new algal symbionts may safeguard devastated reefs from extinction [J]. Nature, 2004, 430: 741
2 Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution [J].Nat Rev Microbiol, 2007, 5 (5): 355-362
3 Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson BC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M. Coral reefs in the Anthropocene [J]. Nature, 2017, 546: 82-90
4 Wilkinson C, Souter D. Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, Australia [J]. Coral Reefs, 2008, 3: 296-298
5 Riegl B, Bruckner A, Coles SL, Renaud P,Dodge RE,Richard E. Coral reefs threats and conservation in an era of global change [J]. Ann N Y Acad Sci, 1162 (1): 136-186
6 Hughes TP, Kerry JT, Alvarez-Noriega M, Alvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R , Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs JPA, Hoogenboom MO, Kennedy EV, Kuo CY, Lough JM, Lowe RJ, Liu G, Cculloch MTM, Malcolm HA, Mcwilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK. Global warming and recurrent mass bleaching of corals [J]. Nature, 2017, 543 (7645): 373-377
7 Hughes TP, Kerry JT, Baird AH,Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G. Global warming transforms coral reef assemblages [J]. Nature, 2018, 556 (7702): 492-496
8 Ban SS, Graham NAJ, Connolly SR. Evidence for multiple stressor interactions and effects on coral reefs [J]. Glob Chang Biol, 2014, 20 (3): 681-697
9 Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems [J]. Annu Rev Microbiol, 2016, 70: 317-340
10 van Oppen MJH, Blackall LL. Coral microbiome dynamics, functions and design in a changing world [J]. Nat Rev Microbiol, 2019, 17 (9): 557-567
11 Bourne DG, Garren M, Work TM, Rosenberg E, Smith GW, Harvell CD. Microbial disease and the coral holobiont [J]. Trends Microbiol, 2009, 17 (12): 554-562
12 Peixoto RS, Rosado PM, de Assis Leite DCD, Rosado AS, Bourne DG. Beneficial microorganisms for corals (BMC): proposed mechanisms for coral health and resilience [J]. Front Microbiol, 2017, 8: 341
13 Neave MJ, Rachmawati R, Xun L, Michell CT, Bourne DG, Apprill A, Voolstra CR. Differential specificity between closely related corals and abundant Endozoicomonas endosymbionts across global scales [J]. ISME J, 2017, 11 (1): 186-200
14 Ochsenkühn MA, Schmitt-Kopplin P, Harir M, Amin SA. Coral metabolite gradients affect microbial community structures and act as a disease cue [J]. Commum Biol, 2018, 1 (1): 184
15 van de Water JAJM, Allemand D, Ferrier-Pagès C. Host-microbe interactions in octocoral holobionts - recent advances and perspectives [J]. Microbiome, 2018, 6 (1): 64
16 D Ainsworth T, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, Gates RD, Padilla-Gami?o JL, Spalding HL, Smith C, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O, Leggat W. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts [J]. ISME J, 2015, 9 (10): 2261-2274
17 La Rivière M, Roumagnac M, Garrabou J, Bally M. Transient shifts in bacterial communities associated with the temperate gorgonian Paramuricea clavata in the northwestern Mediterranean Sea [J]. PLoS ONE 2013, 8 (2): e57385
18 Wessels W, Sprungala S, Watson SA, Miller DJ, Bourne DG. The microbiome of the octocoral Lobophytum pauciflorum: minor differences between sexes and resilience to short-term stress [J]. FEMS Microbiol Ecol, 2017, 93 (5): fix013
19 McCauley EP, Haltli B, Correa H, Kerr RG. Spatial and temporal investigation of the microbiome of the Caribbean octocoral Erythropodium caribaeorum [J]. FEMS Microbiol Ecol, 2016, 92 (9): fiw147
20 van de Water JAJM, Melkonian R, Junca H, Voolstra CR, Reynaud S, Allemand D, Ferrier-Pagès C. Spirochaetes dominate the microbial community associated with the red coral Corallium rubrum on a broad geographic scale [J]. Sci Rep, 2016, 6: 27277
21 van de Water JAJM, Voolstra CR, Rottier C, Cocito S, Peirano A, Allemand D, Ferrier-Pagès C. Seasonal stability in the microbiomes of temperate gorgonians and the red coral Corallium rubrum across the Mediterranean Sea [J]. Microb Ecol, 2018, 75 (1): 1-15
22 Olson JB, Kellogg CA. Microbial ecology of corals, sponges, and algae in mesophotic coral environments [J]. FEMS Microbiol Ecol, 2010, 73 (1): 17-30
23 Erwin PM, Thacker, RW. Cryptic diversity of the symbiotic cyanobacterium Synechococcus spongiarum among sponge hosts [J]. Mol Ecol, 2008, 17: 2937-2947
24 Davy JE, Patten NL. Morphological diversity of virus-like particles within the surface microlayer of scleractinian corals [J]. Aquat Microb Ecol, 2007, 47 (1): 37-44
25 Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR. Bacterial community dynamics are linked to patterns of coral heat tolerance [J]. Nat Commun, 2017, 8: 14213
26 Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. The coral probiotic hypothesis [J]. EnvironMicrobiol, 2006, 8 (12): 2068
27 Grégoire V, Schmacka F, Coffroth MA, Karsten U. Photophysiological and thermal tolerance of various genotypes of the coral endosymbiont Symbiodinium sp. (Dinophyceae) [J]. J Appl Phycol, 2017, 29 (4): 1893-1905
28 Nú?ez-Pons L, Bertocci I, Baghdasarian G. Symbiont dynamics during thermal acclimation using cnidarian-dinoflagellate model holobionts [J]. Mar Environ Res, 2017, 130: 303-314
29 Apprill A, Weber LG, Santoro AE. Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes [J]. mSystems, 2016, 1 (5): e00143-16
30 赵卫东, 宋金明. 珊瑚“奢侈消费”营养盐的研究[C]. 第七届全国海洋湖沼青年学者学术研讨会论文摘要集, 2000 [Zhao WD, Song JM, Research on the “luxury consumption” of coral nutrients [C]. The 7th National Symposium of young scholars of marine and Limnology, 2000]
31 van de Water JAJM, Melkonian R, Voolstra CR, Junca H, Beraud E, Allemand D, Ferrier-Pagès C. Comparative assessment of Mediterranean gorgonian-associated microbial communities reveals conserved core and locally variant bacteria [J]. Microb Ecol, 2017, 73 (2): 466-78
32 Morrow KM, Bourne DG, Humphrey C, Botte ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges [J]. ISME J, 2015, 9 (4): 894-908
33 van de Water JAJM, Ainsworth TD, Leggat W, Bourne DG, Willis BL, van Oppen MJH. The coral immune response facilitates protection against microbes during tissue regeneration [J]. Mol Ecol, 2015, 24 (13): 3390-404
34 Shirur KP, Jackson CR, Goulet TL. Lesion recovery and the bacterial microbiome in two Caribbean gorgonian corals [J]. Mar Biol, 2016, 163 (12): 238
35 Kenkel CD, Moya A, Strahl J, Humphrey C, Bay LK. Functional genomic analysis of corals from natural CO2 -seeps reveals core molecular responses involved in acclimatization to ocean acidification [J]. Glob Chang Biol, 2018, 24 (1): 158-171
36 周国伟, 黄晖, 喻子牛, 董志军, 李元超. 造礁石珊瑚与其共生藻 (Symbiodinium)共生研究进展 [J]. 生态学报, 2009, 29 (8): 4397-4407 [Huang GW, Huang H, Yu ZN, Dong ZJ, Li YC. The current state of research in scleractinian coral-Symbiodinium symbiosis [J]. Acta Ecol Sin, 2009, 29 (8): 4397-4405]
37 Rowan R. Coral bleaching: thermal adaptation in reef coral symbionts [J]. Nature, 2004, 430 (7001): 742
38 Zhu B, Wang G, Huang B, Tseng CK. Effects of temperature, hypoxia, ammonia and nitrate on the bleaching among three coral species [J]. Chin Sci Bull, 2004, 49 (18): 1923-1928
39 Moree WJ, McConnell OJ, Nguyen DD, Sanchez LM, Yang YL, Zhao X, Liu WT, Boudreau PD, Srinivasan J, Atencio L, Ballesteros J, Gavilán RG, Torres-Mendoza D, Guzmán HM, Gerwick WH, Gutiérrez M, Dorrestein PC. Microbiota of healthy corals are active against fungi in a light-dependent manner [J]. ACS Chem Biol, 2014, 9 (10): 2300-2308
40 McCauley M, Goulet TL. Caribbean gorgonian octocorals cope with nutrient enrichment [J]. Mar Pollu Bull, 2019, 141: 621-628
41 Yentsch CS, Yentsch CM, Cullen JJ, Lapointe B, Phinney DA, Yentsch SW.Sunlight and water transparency: cornerstones in coral research [J]. J Exp Mar Biol and Ecol, 2002, 268 (2): 171-183
42 Allen JF. The function of genomes in bioenergetic organelles [J]. Philos Trans R Soc B-Biol Sci, 2003, 358 (1429): 19-38
43 Sawada S, Kuninaka M, Watanabe K, Lapointe B, Phinney DA, Yentsch SW. The mechanism to suppress photosynthesis through end-product inhibition in single-rooted soybean leaves during acclimation to CO2 enrichment [J]. Plant Cell Physiol, 2001, 42 (10): 1093-1102
44 Radzvilavicius AL, Blackstone NW. The evolution of individuality revisited [J]. Biol Rev Camb Philos Soc, 2018, 93 (2): 1620-1633
45 Lutz A, Raina J B, Motti CA, Miller DJ, van Oppen MJH. Host coenzyme Q redox state is an early biomarker of thermal stress in the coral Acropora millepora [J]. PLoS ONE, 2015, 10 (10): e0139290
46 Parrin AP, Somova EL, Kern PM, Millet TA, Bross LS, Blackstone NW. The use of in vivo microscopy to image the cnidarian stress response in three octocoral species [J]. Invertebr Biol, 2017, 136 (3): 330-344
47 Paxton CW, Davy SK, Weis VM. Stress and death of cnidarian host cells play a role in cnidarian bleaching [J]. J Exp Biol, 2013, 216 (15): 2813-2820
48 Klaus JS, Budd AF, Heikoop JM, Fouke BW. Environmental controls on corallite morphology in the reef coral Montastraea annularis [J]. Bull Mar Sci, 2007, 80 (1): 233-260
49 Baker DM, Freeman CJ, Wong JCY, Fogel ML, Knowlton N. Climate change promotes parasitism in a coral symbiosis [J]. ISME J, 2018, 12 (3): 921
50 Wooldridge SA. Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae [J]. Biogeosciences, 2013, 10 (3): 1647-1658
51 Wooldridge SA. Is the coral-algae symbiosis really ‘mutually beneficial’for the partners? [J]. BioEssays, 2010, 32 (7): 615-625
52 La Rivière M, Garrabou J, Bally M. Evidence for host specificity among dominant bacterial symbionts in temperate gorgonian corals [J]. Coral Reefs, 2015, 34 (4): 1087-1098
53 Tracy AM, Koren O, Douglas N, Weil E, Harvell CD. Persistent shifts in Caribbean coral microbiota are linked to the 2010 warm thermal anomaly [J].Environ Microbiol Rep, 2015, 7 (3): 471-479
54 Wangpraseurt D, Pernice M, Guagliardo P, Kilburn MR, Clode PL, Polerecky L, Kuhl M. Light microenvironment and single-cell gradients of carbon fixation in tissues of symbiont-bearing corals [J]. ISME J, 2016, 10 (3): 788-792
55 Liang JY, Yu KF, Wang YH, Huang XY, Huang W, Qin ZJ, Pan ZL, Yao QC, Wang WH, Wu ZC. Distinct bacterial communities associated with massive and branching scleractinian corals and potential linkages to coral susceptibility to thermal or cold stress [J]. Front Microbiol, 2017, 8: 979
56 Hernandez-Agreda A, Leggat W, Bongaerts P, Ainsworth TD. The microbial signature provides insight into the mechanistic basis of coral success across reef habitats [J]. mBio, 2016, 7 (4): e00560-16
57 Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance [J]. ISME J, 2016, 10 (9): 2280-2292
58 Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, Gates RD, Padilla-Gamino JL, Spalding HL, SmithC, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O, Leggat W. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts [J]. ISME J, 2015, 9 (10): 2261-2274
59 Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, Kusel K, Rillig MC, Rivett DW, Salles JF, van der Heijden MG, Youssef NH, Zhang X, Wei Z, Hol WH. Where less may be more: how the rare biosphere pulls ecosystems strings [J]. ISME J, 2017, 11 (4): 853-862
60 Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time [J]. Sci Rep, 2019, 9 (1): 6785
61 Olson ND, Ainsworth TD, Gates RD, Takabayashi M. Diazotrophic bacteria associated with Hawaiian Montipora corals: diversity and abundance in correlation with symbiotic dinoflagellates [J]. J Exp Mar Biol Ecol, 2009, 371 (2): 140-146
62 Pernice M, Raina JB, R?decker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health [J]. ISME J, 2019, doi: 10.1038/s41396-019-0548-z
63 Wegley L, Edwards R, Rodriguez-Brito B, Liu H, Rohwer F. Metagenomic analysis of the microbial community associated with the coral Porites astreoides. [J]. Environ Microbiol, 2007, 9 (11): 2707-2719
64 Chimetto LA, Brocchi M, Thompson CC, Martins RCR, Ramos HR, Thompson FL. Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida [J]. Syst Appl Microbiol, 2008, 31 (4): 312-319
65 Lesser MP, Mazel CH, Gorbunov MY, Falkowski PG. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals [J]. Science, 2004, 305 (5686): 997-1000
66 Lesser MP, Mobley CD. Bathymetry, water optical properties, and benthic classification of coral reefs using hyperspectral remote sensing imagery [J]. Coral Reefs, 2007, 26 (4): 819-829
67 Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses [J]. Trends Microbiol, 2010, 18 (10): 455-463
68 Beman JM, Roberts KJ, Wegley L, Rohwer F, Francis CA. Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals [J]. Appl Environ Microbiol, 2007, 73 (17): 5642-5647
69 Chu ND. Structure and stability of the coral microbiome in space and time [J]. Sci Rep, 2019, 9 (1): 6785
70 Kim K, Harvell CD, Kim PD, Smith GW, Merkel SM. Fungal disease resistance of Caribbean sea fan corals (Gorgonia spp.) [J]. Mar Biol, 2000, 136 (2): 259-267
71 Kim K, Alker AP, Shuster K, Quirolo C, Harvell CD. Longitudinal study of aspergillosis in sea fan corals [J]. Dis Aquat Org, 2006, 69 (1): 95-99
72 Alker AP, Smith GW, Kim K. Characterization of Aspergillus sydowii (Thom et Church), a fungal pathogen of Caribbean sea fan corals [J]. Hydrobiologia, 2001, 460: 105-111
73 Spring S, Scheuner C, Goker M, Klenk HP. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genomescale data [J]. Front Microbiol, 2015, 6: 281
74 Duque-Alarcón A, Santiago-Vásquez LZ, Kerr RG. A microbial community analysis of the octocoral Eunicea fusca [J]. Electron J Biotechnol, 2012, 15 (5): 1-9
75 Lacroix Z, Boucelma O, Essid M. The biological integration system [C]. Acm Cikm International Workshop on Web Information & Data Management, 2003
76 Neave MJ, Apprill A, Ferrier-Pagès C, Voolstra CR. Diversity and function of prent symbiotic marine bacteria in the genus Endozoicomonas [J]. Appl Microbiol Biotechnol, 2016, 100 (19): 8315-8324
77 Spring S, Riedel T. Mixotrophic growth of bacteriochlorophyll a-containing members of the OM60/NOR5 clade of marine gammaproteobacteria is carbon-starvation independent and correlates with the type of carbon source and oxygen availability [J]. BMC Microbiol, 2013, 13 (1): 117
78 Keller-Costa T, Silva R, Lago-Lestón A, Costa R. Genomic insights into Aquimarina sp. strain EL33, a bacterial symbiont of the gorgonian coral Eunicella labiata [J]. Genome Announc, 2016, 4 (4): e00855-16
79 Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR.Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea [J]. Mar Pollut Bull, 2015, 105 (2): 629-640
80 Morrow KM, Bourne DG, Humphrey C, Botte ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS. Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges [J]. ISME J, 2015, 9 (4): 894-908
81 Kirchman DL. The ecology of Cytophaga-Flavobacteria in aquatic environments [J]. FEMS Microbiol Ecol, 2002, 39 (2): 91-100
82 Brück TB, Brück WM, Santiago-Vázquez LZ, McCarthy PJ, Kerr RG. Diversity of the bacterial communities associated with the Azooxanthellate deep water octocorals Leptogorgia minimata, Iciligorgia schrammi, and Swiftia exertia [J].Mar Biotechnol, 2007, 9 (5): 561-576
83 Neulinger SC, G?rtner A, J?rnegren J, Ludvigsen M, Lochte K, Dullo WC.Tissue-associated “Candidatus Mycoplasma corallicola” and filamentous bacteria on the cold-water coral Lophelia pertusa (Scleractinia) [J]. Appl Environ Microbiol, 2009, 75 (5): 1437-1444
84 Nelson W, Stegen J. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle [J]. Front Microbiol, 2015, 6: 713
85 Ainsworth TD, Thurber RV, Gates RD. The future of coral reefs: a microbial perspective [J]. Trends Ecol Evol, 2010, 25 (4): 233-240
86 Asfahl KL, Schuster M, Gibbs K. Social interactions in bacterial cell-cell signaling [J]. FEMS Microbiol Rev, 2017, 41 (1): 92-107
87 Franzenburg S, Walter J, Kunzel S, Wang J, Baines JF, Bosch TC, Fraune S. Distinct antimicrobial peptide expression determines host species-specific bacterial associations [J]. PNAS, 2013, 110 (39): E3730-8
88 Franzenburg S, Fraune S, Kunzel S, Baines JF, Domazet-Loso T, Bosch TC.My D88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers [J]. PNAS, 2012, 109 (47): 19374-9
89 Pietschke C, Treitz C, Forêt S, Schultze A, Künzel S, Tholey A, Bosch TCG, Fraune S. Host modification of a bacterial quorum-sensing signal induces a phenotypic switch in bacterial symbionts [J]. PNAS, 2017, 114 (40): E8488-97
90 汤开浩, 王嫣, 王晓雪. 造礁珊瑚共附生微生物信号分子的研究进展 [J]. 中国科学: 地球科学, 2019, 49: 753-764 [Tang K, Wang Y, Wang X. Recent progress on signalling molecules of coral-associated microorganisms [J]. Sci China Earth Sci, 62: 609-618]
91 Hunt LR, Smith SM, Downum KR, Mydlarz LD. Microbial regulation in gorgonian corals [J]. Mar Drugs, 2012, 10 (6): 1225
92 Tello E, Castellanos L, Aro-Ferro C, Rodríguez J, Jiménez C, Duque C. Absolute stereochemistry of antifouling cembranoid epimers at C-8 from the Caribbean octocoral Pseudoplexaura flagellosa. Revised structures of plexaurolones [J]. Tetrahedron, 2011, 67 (47): 9112-9121
93 Tello E, Castellanos L, Arévalo-Ferro C, Duque C. Disruption in quorum-sensing systems and bacterial biofilm inhibition by cembranoid diterpenes isolated from the octocoral Eunicea knighti [J]. J Nat Prod, 2012, 75 (9): 1637-42
94 Rocha J, Calado R, Leal M. Marine bioactive compounds from Cnidarians [C]//Springer Handbook of Marine Biotechnology. Heidelberg: Springer Berlin Heidelberg, 2015:823-840
95 Tout J, Jeffries TC, Petrou K, Tyson GW, Webster NS, Garren M, Stocker R, Ralph PJ, Seymour JR. Chemotaxis by natural populations of coral reef bacteria [J]. ISME J. 2015, 9 (8): 1764-1777
96 Raina JB, Dinsdale EA, Willis BL, Bourne DG. Do the organic sulfur compounds DMSP and DMS drive coral microbial associations? [J] Trends Microbiol, 2010, 18 (3): 101-108
97 Arora DP, Hossain S, Xu Y, Boon EM. Nitric oxide regulation of bacterial biofilms [J]. Biochemistry, 2015, 54 (24): 3717-3728
98 Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ.NO means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association [J]. Cell Microbiol, 2004, 6 (12): 1139-1151
99 Hawkins TD, Davy SK. Nitric oxide and coral bleaching: is peroxynitrite generation required for symbiosis collapse [J]? J Exp Biol, 2013, 216 (Pt 17): 3185-3188
100 Plate L, Marletta MA. Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior [J]. Trends Biochem Sci, 2013, 38 (11): 566-575
101 Zhou Z, Zhao S, Tang J, Liu Z, Wu Y, Wang Y, Lin S. Altered immune landscape and disrupted Coral-symbiodinium symbiosis in the scleractinian coral Pocillopora damicornis by Vibrio coralliilyticus challenge [J]. Front Physiol, 2019, 10: 366
102 Patra SK, Samaddar S, Sinha N, Ghosh S. Reactive nitrogen species induced catalases promote a novel nitrosative stress tolerance mechanism in Vibrio cholerae [J]. Nitric Oxide, 2019, 88: 35-44
103 Wang CY, Wang KL, Qian PY, Xu Y, Chen M, Zheng JJ, Liu M, Shao CL, Wang CY. Antifouling phenyl ethers and other compounds from the invertebrates and their symbiotic fungi collected from the South China Sea [J]. AMB Express, 2016, 6 (1): 102
104 Hawas UW, El-Desouky S, Abou El-Kassem L, Elkhateeb W. Alternariol derivatives from Alternaria alternata, an endophytic fungus residing in red sea soft coral, inhibit HCV NS3/4A protease [J]. Appl Biochem Microbiol, 2015, 51 (5): 579-584
105 Kumar S.S, Gautam N. Chemical and bioactive profiling, and biological activities of coral fungi from Northwestern Himalayas. Sci Rep, 2017, 7: 46570
106 Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E. The coral probiotic hypothesis [J]. Environ Microbiol, 2006, 8 (12): 2068-2073
107 Pham TM, Wiese J, Wenzel-Storjohann A, Imhoff JF. Diversity and antimicrobial potential of bacterial isolates associated with the soft coral Alcyonium digitatum from the Baltic Sea [J]. Antonie Van Leeuwenhoek, 2016, 109 (1): 105-119
108 ElAhwany AMD, Ghozlan HA, ElSharif HA, Sabry SA. Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum [J]. J Basic Microbiol, 2015, 55 (1): 2-10
109 葛洁虹, 高程海, 王萍, 文良娟, 漆淑华. 南海二叉黑角珊瑚化学成分研究[J]. 中药材, 2010, 33 (9): 1403-1405 [Ge JH, Gao CH, Wang P, WEn LJ, Qi SH. Study on the chemical constituents of Antipathes dichotoma [J]. J Chin Med Mat, 2010, 33 (9): 1403-1405]
110 Williams GC, Chen JY. Resurrection of the octocorallian genus Antillogorgia for Caribbean species previously assigned to Pseudopterogorgia, and a taxonomic assessment of the relationship of these genera with Leptogorgia (Cnidaria, Anthozoa, Gorgoniidae) [J]. Zootaxa, 2012, 3505 (1): 39-52
111 Weinheimer AJ, Matson JA. Crassin acetate, the principal antineoplastic agent in four gorgonians of the Pseudoplexaura genus [J]. Lloydia, 1975, 38 (5): 378-382
112 Karthik L, Li Z. Biosynthesis of antibiotics from microbial symbionts of sponges and corals [C]/Symbiotic Microbiomes of Coral Reefs Sponges and Corals. Dordrecht: Springer, 2019: 249-261
113 Li Y, Liew YJ, Cui G, Cziesielski MJ, Zahran N, Michell CT, Voolstra CR, Aranda M. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia [J]. Sci Adv, 2018, 4 (8): eaat2142
114 Levy O, Karako-Lampert S, Waldman Ben-Asher H, Zoccola D, Pagès G, Ferrier-Pagès C.Molecular assessment of the effect of light and heterotrophy in the scleractinian coral Stylophora pistillata [J]. Proc Biol Sci, 2016, 283 (1829): 20153025
115 Lin Z, Wang L, Chen M, Chen J. The acute transcriptomic response of coral-algae interactions to pH fluctuation [J]. Mar Genomics, 2018, 42: 32-40
116 Bellantuono AJ, Dougan KE, Granados-Cifuentes C, Rodriguez-Lanetty M. Free-living and symbiotic lifestyles of a thermotolerant coral endosymbiont display profoundly distinct transcriptomes under both stable and heat stress conditions [J]. Mol Ecol, 2019, doi: 10.1111/mec.15300
117 Kelly LW, Haas AF, Nelson CE. Ecosystem microbiology of coral reefs: linking genomic, metabolomic, and biogeochemical dynamics from animal symbioses to reefscape processes [J]. mSystems, 2018, 3 (2): e00162-17


Last Update: 2020-08-25