|Table of Contents|

Protective effect of biological iron sulfide composites against chromium (VI) pollution in zebrafish(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2017 05
Page:
886-891
Research Field:
Articles
Publishing date:

Info

Title:
Protective effect of biological iron sulfide composites against chromium (VI) pollution in zebrafish
Author(s):
YUAN Wei1 2 3 XIE Yifei1 3** LI Xudong1 3 LAN Shuhuan1 3 & LIANG Yajie1 2 3
1 Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences, Chengdu 610041, China
Keywords:
heavy metal pollution biological iron sulfide Cr6+ zebrafish protective effect
CLC:
X174:X52
PACS:
DOI:
10.3724/SP.J.1145.2016.12007
DocumentCode:

Abstract:
Chromium pollution has become a worldwide environmental problem. This paper reports our studies of the feasibility and effect of using biological iron sulfide composites (BISC) to protect Cr6+-exposed fish, aimed at Cr6+ polluted water. After determining the median lethal dose (LC50) of Cr6+ in zebrafish, we studied the treatment effect of BISC on soluble Cr6+. Furthermore, we studied the effect of dosing ratio and time of BISC and pH of the water on the protection of zebrafish in Cr6+ polluted water. The results showed that in the 79.30 mg/L (24 h-LC50) Cr6+-polluted water (natural pH = 6.98), BISC treatment apparently reduced the concentration of soluble Cr6+. When the dosing ratio of BISC was 3, Cr6+ was removed quickly, and the maximum removal ratios were achieved, which were 81.85% in 15 min and 99.99% in 96 h. The survival rate of zebrafish increased in a dosing ratio-dependent manner while it reduced in a dosing time-dependent manner. The optimal dosing ratio of BISC was 0.5 and the optimal dosing time was 0–4 h, which increased the survival ratio of the zebrafish by more than 90%. In addition, BISC dosed at 24 h, increased the survival ratio of zebrafish to three times of the normal ratio after 96 h. In the Cr6+-polluted water with a pH range of 6–9, BISC apparently protected the zebrafish and increased their survival ratio. Moreover, the protective effect of BISC was enhanced with the reduction in pH. Therefore, BISC significantly protected the zebrafish in Cr6+-polluted water, suggesting its wide application potential in Cr6+ pollution emergencies.

References

1 陈程, 陈明. 环境重金属污染的危害与修复[J]. 环境保护, 2010 (3): 55-57 [Cheng C, Chen M. Harm of the heavy metals pollution and its remediation [J]. Environ Prot, 2010 (3): 55-57]
2 李战, 李坤. 重金属污染的危害与修复[J]. 现代农业科技, 2010, 534 (16): 268-270 [Li Z, Li K. Harm of the heavy metals pollution and its remediation [J]. Mod Agric Sci Technol, 2010, 534 (16): 268-270]
3 Mangabeira PAO, Labejof L, Lamperti A, De Almeida AAF, Oliveira AH, Escaig F, Severo M IG, Silva DD, Saloes M, Mielke MS, Lucena ER, Martins MC, Santana KB, Gavrilov KL, Galle P, Levi-Setti R. Accumulation of chromium in root tissues of Eichhornia crassipes (Mart.) Solms. in Cachoeira river - Brazil [J]. Appl Surf Sci, 2004, 231 (23): 497-501
4 张厚坚, 王兴润, 陈春云, 刘雪, 王琪. 典型铬渣污染场地健康风险评价及修复指导限值[J]. 环境科学学报, 2010, 30 (7): 1445-1450 [Zhang HJ, Wang XR, Chen CY, Liu X, Wang Q. The health risk assessmentand remediation guide limitvalue oftypical chromium slagcontaminatedsites [J]. Acta Sci Circum, 2010, 30 (7): 1445-1450]
5 傅鹏, 王飞, 马秀平, 王兰. 沁河沉积物重金属垂直分布特征与风险评价[J]. 应用与环境生物学报, 2013, 19 (2): 305-312 [Fu P, Wang F, Ma XP, Wang L. Vertical distribution of heavy metals in sediments of qinhe river and its risk assessment [J]. Chin J Appl Environ Biol, 2013, 19 (2): 305-312]
6 江澜. 微生物治理铬污染的应用与发展[J]. 重庆工商大学学报(自然科学版), 2006, 23 (2): 132-135 [Jiang L. The application of microorganisms to treatment of pollution by chromium [J]. Chongqing Technol Business Univ (Nat Sci Ed) , 2006, 23 (2): 132-135]
7 Kantar C, Cetin Z, Demiray H. In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids [J]. J Hazard Mater, 2008, 159 (2-3): 287-293
8 胡啸, 蔡辉, 陈刚, 石晓东, 韩磊. 3种类型水生植物及其组合对污染水体中铬、氮和磷的净化效果研究[J]. 水处理技术, 2012, 38 (4): 45-48+54 [Hu X, Cai H, Chen G, Shi XD, Han L. Purification efficiencies of three types of aquatic plants and combination of them to chromium, nitrogen and phosphorus in wastewater [J]. Water Treat Technol, 2012, 38 (4): 45-48, 54]
9 Broadway A, Cave MR, Wragg J, Fordyce FM, Bewley RJF, Graham MC, Ngwenya BT, Farmer JG. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment [J]. Sci Total Environ, 2010, 409 (2): 267-277
10 李雅, 张增强, 沈锋. Fe~0修复重金属铬铅复合污染水体的研究[J]. 中国农业大学学报, 2013, 18 (3): 91-95 [Li Y, Zhang ZQ, Shen F. Remediation of Cr-Pb polluted water with Fe0 [J]. J Chin Agric Univ, 2013, 18 (3): 91-95]
11 周保学, 周定. 铬与人体健康[J]. 化学世界, 2000, 41 (2): 112 [Zhou BX, Zhou D. Chromium and human health [J]. Chem World, 2000, 41 (2): 112]
12 谢翼飞, 李旭东, 李福德. 生物硫铁复合材料处理含铬废水及铬资源化研究[J]. 中国环境科学, 2009, 29 (12): 1260-1265 [Xie YF, Li XD, Li FD. Application of biological iron sulfide composites in chromium-containing wastewater treatment and chromium reclamation [J]. Chin Environ Sci, 2009, 29 (12): 1260-1265]
13 安文辉, 马斯然, 王磊峰. 硫酸盐还原菌处理含铬废水的研究现状[J]. 广东化工, 2012, 39 (17): 97-98 [An WH, Ma SR, Wang LF. Sulfate reducing bacteria processing of chromium-containing waste water research present situation [J]. Guangdong Chem Ind, 2012, 39 (17): 97-98]
14 杨阳, 谢翼飞, 朱德文, 谷晋川, 冯栩, 魏春梅. 生物硫铁生成菌的选育及处理重金属效果研究[J]. 生物技术, 2015, 25 (4): 391-396 [Yang Y, Xie YF, Zhu DW, Gu JC, Feng X, Wei CM. Isolation of a biological iron sulfide composites-producing strain and its application in treatment of heavy metal wastewater [J]. Biotechnology, 2015, 25 (4): 391-396]
15 罗丽卉, 谢翼飞, 刘庆华, 谭周亮, 李旭东. 生物硫铁生成菌的选育及其在重金属废水处理中的应用[J]. 应用与环境生物学报, 2012, 18 (1): 115-121 [Luo LH, Xie YF, Liu QH, Tan ZL, Li XD. Isolation of a biological iron sulfide composites-producing strain and its application in emergency treatment of heavy metal wastewater [J]. Chin J Appl Environ Biol, 2012, 18 (1): 115-121]
16 谢翼飞, 李旭东, 李福德. 生物硫铁纳米材料特性分析及其处理高浓度含铬废水研究[J]. 环境科学, 2009, 30 (4): 1060-1065 [Xie YF, Li XD, Li FD. Property analysis of nanosized iron sulfide produced by sulfate reducing bacteria and its application in the treatment of wastewater containing high concentration of Cr (VI) [J]. Environ Sci, 2009, 30 (4): 1060-1065]
17 周婧超, 谢翼飞, 杨阳, 李旭东. 生物硫铁复合材料对铜暴露斑马鱼的保护研究[J]. 环境科学与技术, 2016, 39 (3): 12-16 [Zhou JC, Xie YF, Yang Y, Li XD. Protection of zebrafish against copper by biological iron sulfide composites [J]. Environ Sci Technol, 2016, 39 (3): 12-16]
18 Yang Y, Xie Y F, Li XD, Zhou JC, Liu JW. Microscopic characteristic of biological iron sulfide composites during the generation process and the association with treatment effect on heavy metal wastewater [J]. Water Sci Technol, 2014, 70 (7): 1292-1297
19 庄平, 王瑞芳, 石小涛, 章龙珍. 氟对西伯利亚鲟仔鱼的急性毒性及安全浓度评价[J]. 生态毒理学报, 2009, 4 (3): 440-445 [Zhuang P, Wang RF, Shi XT, Zhang LZ. Acute toxicity and safety assessment of fluoride to larval siberian sturgeon Acipenser baeri [J]. Asian J Ecotoxicol, 2009, 4 (3): 440-445]
20 刘大胜, 孔强, 王大榜, 沈浩松, 李源. 金属离子鱼类急性毒性研究及对环境标准修订的启示意义[J]. 环境科学与管理, 2010, 35 (4): 38-42 [Liu DS, Kong Q, Wang DB, Shen HS, Li Y. Fish acute toxicity of metal ions and its inspiration for environmental standards revision [J]. Environ Sci Manage, 2010, 35 (4): 38-42]
21 修垒, 李专, 安平平. 镉和铬对不同生物的毒性效应的研究[J]. 科技创新导报, 2014 (31): 64-67 [Xiu L, Li C, An PP. Research on the toxic effects of cadmium and chromium in different organisms [J]. Sci Techn Innov Herald, 2014 (31): 64-67]
22 王庆伟. 重金属、TPT和PCP对斑马鱼单一和联合毒性作用[D]. 青岛: 青岛科技大学, 2011 [Wang QW. Single and joint toxicity effects of heavy metals, TPT and PCP on brachydanio rerio (zebrafish) [D]. Qingdao: Qingdao University of Science and Technology, 2011]
23 Lovley DR, Holmes DE, Nevin KP. Dissimilatory Fe(III) and Mn(IV) reduction [J]. Adv Microb Physiol, 2004, 49 (2): 219-86
24 Bottcher ME, Thamdrup B, Gehre M, Theune A. S-34/S-32 and O-18/O-16 fractionation during sulfur disproportionation by Desulfobulbus propionicus [J]. Geomicrobiol J, 2005, 22 (5): 219-226
25 尹华, 叶锦韶, 彭辉, 张娜, 余莉萍. 掷孢酵母吸附去除铬的性能研究[J]. 环境化学, 2003, 22 (5): 469-473 [Yin H, Ye JS, Peng H, Zhang N, Yu LP. Study on the adsorption capability of Sporobolomyces sp. on chromium [J]. Environ Chem, 2003, 22 (5): 469-473]
26 肖利萍, 张镭, 李月. 硫酸盐还原菌及其在废水厌氧治理中的应用[J]. 水资源与水工程学报, 2011, 22 (1): 45-49 [Xiao LP, Zhang L, Li Y. Application of sulfate-reducing bacteria to anaerobic waste water treatment [J]. J Water Resour Water Eng, 2011, 22 (1): 45-49]
27 高原. 硫酸盐还原菌及其在重金属废水治理中的应用[J]. 科技信息, 2009 (1): 437-438 [Gao Y. Sulfate-reducing bacteria and its application in treatment of heavy metal wastewater [J]. Sci Technol Inf, 2009 (1): 437-438]

Memo

Memo:
-
Last Update: 2017-10-25