|Table of Contents|

Heterologous overexpression of Populus euphratica BAK1;1 gene enhanced resistance to Pst DC3000 in tobacco(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2018 02
Page:
335-343
Research Field:
Articles
Publishing date:

Info

Title:
Heterologous overexpression of Populus euphratica BAK1;1 gene enhanced resistance to Pst DC3000 in tobacco
Author(s):
TANG Hai YAO Yin′an ZHANG Guoyan LI Xing DING Hongxia WU Yingqing GAO Yongfeng
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
Keywords:
PeBAK11 Populus euphratica tobacco pathogenesis-related genes Pst DC3000
CLC:
S5.034 : Q786
PACS:
DOI:
10.19675/j.cnki.1006-687x.2017.10018
DocumentCode:

Abstract:
BRI1-ASSOCIATED RECEPTORKINASE1 (BAK1), a leucine-rich repeat (LRR) receptor protein kinase, plays a significant role in brassinosteroid (BR) signaling. Furthermore, it combines with other LRR-RLKs protein to initiate immune response in plants. The objective of this study was to (1) investigate the function of the Populus euphratica BAK1;1 gene in the resistance of transgenic tobacco to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and (2) discuss the regulation pathway of PeBAK1;1 involved in the resistance to plant pathogen. We cloned the cDNA sequence of the P. euphratica PeBAK1;1 gene, constructed the pBI121-35S::PeBAK1;1 over-expression vector, and then transformed it into wild-type tobacco by Agrobacterium-mediated transformation to obtain PeBAK1;1-overexpressing transgenic tobacco plants. The bioinformatic analysis showed that the PeBAK1;1 protein contained all the structural features of the plant SERK family. The phylogenetic tree showed that PeBAK1;1 has the highest sequence homology with PtBAK1. The gene expression profile results indicated that the expression of PeBAK1;1 in the root was higher than that in the leaf and stem. The wild-type tobacco plants showed an obvious susceptibility to Pst DC3000, whereas the transgenic plants exhibited enhanced resistance to Pst DC3000. Compared with that of the wild-type (WT), the real-time PCR and quantitative real-time PCR analysis revealed that the expression of pathogenesis-related genes (including PR1, PR3, PR4, and PR5), BAK1-interacting receptor kinase 1 gene, and BONZAI1 gene was upregulated in 35S::PeBAK1;1 transgenic tobacco plants. In conclusion, the PeBAK1;1 gene plays a positive regulatory role in 35S::PeBAK1;1 transgenic tobacco against Pst DC3000, which can enhance the resistance of plants to pathogen.

References

1 Li J, Nagpal P, Vitart V, Mc Morris TC, Chory J. A role for brassinos-teroids in light-dependent development of Arabidopsis [J]. Science, 1996, 272 (5260): 398-401
2 Clouse SD, Langford M, Mc Morris TC. A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development [J]. Plant Physiol, 1996, 111 (3): 671-678
3 Clouse SD, Sasse JM. Brassinosteroids: essential regulators of plant growth and development [J]. Annu Rev Plant Physiol Mol Biol, 1998, 49 (1): 427-451
4 Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC. BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling [J]. Cell, 2002, 110 (2): 213-222
5 Nam KH, Li J. BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling [J]. Cell, 2002, 110 (2): 203-212
6 Roux M, Schwessinger B, Albrecht C, Chinchilla D, Jones A, Holton N, Malinovsky FG, T?r M, de Vries S, Zipfel C. The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunityto hemibiotrophic and biotrophic pathogens [J]. Plant Cell, 2011, 23: 2440-2455
7 Ladwig F, Dahlke RI, Stührwohldt N, Hartmann J, Harter K, Sauter M. Phytosulfokine regulates growth in Arabidopsis through a response module at the plasma membrane that includes cyclic nucleotide-gated channel 17, H+-ATPase, and BAK1 [J]. Plant Cell, 2015, 27: 1718-1729
8 Chinchilla D, Zipfel C, Robatzek S, Kemmerling B, Nürnberger T, Felix G, Boller T. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence [J]. Nature, 2007, 448: 497-500
9 Xiang T, Zong N, Zhang J, Chen J, Zhou JM. BAK1 is not a target of the pseudomonas syringae effector AvrPto [J]. Mol Plant-Microb Interact, 2011, 24 (1): 100-107
10 Hann DR, Rathjen JP. Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana [J]. Plant J, 2007, 49 (4): 607-618
11 De Torres M, Mansfield JW, Grabov N, Brown IR, Ammouneh H, Tsiamis G, Forsyth A, Robatzek S, Grant M, Boch J. Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis [J]. Plant J, 2006, 47 (3): 368-382
12 He P, Shan L, Lin NC, Martin GB, Kemmerling B, Nurnberger T, Sheen J. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity [J]. Cell, 2006, 125 (3): 563-575
13 孟培. 拟南芥BON1及其互作蛋白BIR1, BAK1在植物生长与防卫中的功能分析[D]. 北京: 中国农业大学, 2012 [Meng P. Functional analysis of BON1 and its interacting protein BIR1, BAK1 in plant growth and defenses in Arabidopsis [D]. Beijing: China Agricultural University, 2012]
14 杨辉, 闽东波, 黄吉, 唐亮, 黄云. 拟南芥BAK1基因转化及防御作用[J]. 生物技术通报, 2012, 8: 71-75 [Yang H, Min DT, Huang J, Tang L, Huang Y. Transformation and the defense role of BAK1 in Arabidopsis thaliana [J]. Biotechnol Bull, 2012, 8: 71-75]
15 田哲娟. 类受体激酶基因StSERK3A/BAK1在马铃薯晚疫病抗性中的功能分析[D]. 武汉: 华中农业大学, 2014 [Tian ZJ. Functional analysis of the like-receptor kinase gene StSERK3A/BAK1 in potato late blight resistance [D]. Wuhan: Huazhong Agricultural University, 2014]
16 Yang DH, Hettenhausen C, Baldwin IT, Wu JQ. The multifaceted function of BAK1/SERK3: plant immunity to pathogens and responses1 to insect herbivores [J]. Plant Signal Behav, 2011, 6 (9): 1322-1324
17 Chen J, Xia X, Yin W. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica [J]. Biochem Biophys Res Commun, 2009, 378 (3): 483-487
18 马洪双, 夏新莉, 尹伟伦. 胡杨SCL7 基因及其启动子片段的克隆与分析[J]. 北京林业大学学报, 2011, 33 (1): 1-10 [Ma HS, Xia XL, Yin WL. Cloning and analysis of SCL7 gene from Populus euphratica [J]. J Beijing For Univ, 2011, 33 (1): 1-10]
19 覃玉蓉, 夏新莉, 尹伟伦. 实时荧光定量PCR 检测miR169g在脱水与高盐胁迫下胡杨叶中的表达[J]. 现代仪器, 2011, 17 (3): 28-30 [Qin YR, Xia XL, Yin WL. Expression determination of miR169g under dehydration and high salinity stress in Populus euphratica leaves by real-time quantitative PCR [J]. Mod Instru, 2011, 17 (3): 28-30]
20 Yan DH, Fenning T, Tang S, Xia XL, Yin WL. Genome-wide transcriptional response of Populus euphratica to long-term drought stress [J]. Plant Sci, 2012, 195: 24-35
21 Wang HL, Chen J, Tian Q, Wang S, Xia X, Yin W. Identification and validation of reference genes for Populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR [J]. Physiol Plant, 2014, 152 (3): 529-545
22 Horseh RB, Fryj E, Hoffmann NI. A simple and general method for transferring genes into plants [J]. Science, 1985, 227: 1229-1231
23 杨丽娜. 农杆菌介导pac1基因转化烟草的研究[M]. 长春: 吉林农业大学, 2008 [Yang LN. Transformation of pac1 gene into tobacco via Agrobacterium-mediated method [M]. Jinlin: Jilin Agricultural University, 2008]
24 陈永富, 王阳, 冯倩, 唐海, 吴英青, 高永峰. 异源表达胡杨PeCPD基因提高烟草对盐、高氮和干旱胁迫的抗性[J]. 应用与环境生物学报, 2017, 23 (2): 225-231 [Chen YF, Wang Y, Feng Q, Tang H, Wu YQ, Gao YF. Heterlogous overexpression of Populus euphratica CPD improved tobacco resistance to salt, high nitrogen and drought stress [J]. Chin J App Environ Blol, 2017, 23 (2): 225-231]
25 郝丛丛, 郑会欣, 贾娇, 司贺龙, 陈展, 赵斌, 张靖, 邢继红, 董金皋. 拟南芥TIN6-22在抵抗Pst DC3000侵染过程中的功能分析[J]. 中国农业科学, 2013, 46 (4): 678-685 [Hao CC, Zheng HY, Jia J, Si HL, Chen Z, Zhao B, Zhang J, Xing JH, Dong JG. Functional anaiysis of TIN6-22 in Arabidopsis thaliana against the infection of Pst DC3000 [J]. Sci Agric Sin, 2013, 46 (4): 678-685]
26 陈现朝, 周永力. BAK1调控植物免疫信号识别和转导的分子机制[J]. 植物遗传资源学报, 2013, 14 (6): 1102-1107 [Chen XC, Zhou YL. Molecular mechanism underlying BAK1 involved in plant immunity signal recognition and transduction [J]. J Plant Genet Resour, 2013, 14 (6): 1102-1107]
27 Jaillais Y, Belkhadir Y, Balsem?o-Pires E, Dangl JL, Chory J. Extracellular leucine-rich repeats as a platform for receptor /coreceptor complex formation [J]. PNAS, 2011, 108 (20): 8503-8507
28 Greeff C, Roux M, Mundy J, Petersen M. Receptor-like kinase complexes in plant innate immunity [J]. Front Plant Sci, 2012, 3: 264
29 Hann DR, Rathjen JP. Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana [J]. Plant J, 2007, 49 (4): 607-618
30 Gao M, Wang X, Wang D, Xu F, Ding X, Zhang Z, Bi D, Cheng YT, Chen S, Li X, And Zhang Y. Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis [J]. Cell Host Microb, 2009, 6: 34-44
31 Wang Z, Meng P, Zhang X, Ren D, Yang S. BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature-dependent plant growth and cell death in Arabidopsis [J]. Plant J, 2011, 67: 1081-1093

Memo

Memo:
-
Last Update: 2018-04-25