|Table of Contents|

Improvement of sludge dewaterability using bioleaching combined with a Fenton-like reaction(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2018 01
Page:
162-165
Research Field:
Articles
Publishing date:

Info

Title:
Improvement of sludge dewaterability using bioleaching combined with a Fenton-like reaction
Author(s):
ZHANG Pengfei FANG Di**ZHOU Lixiang
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
Keywords:
sludge bioleaching Acidithiobacillus ferrooxidans Fenton-like dewaterability
CLC:
X703
PACS:
DOI:
10.19675/j.cnki.1006-687x.2017.04003
DocumentCode:

Abstract:
To investigate the influence of Acidithiobacillus ferrooxidans-based bioleaching combined with a Fenton-like reaction on sludge dewaterability, Fenton oxidation and bioleaching were performed using separate and combined conditioning via batch experiments. Several parameters, such as specific resistance to filtration (SRF), capillary suction time (CST), and the time to filter (TTF), were used to evaluate the dewatering performance. The contents and composition of extracellular polymer substances (EPS) and the sludge particle size were also measured to analyze the possible conditioning mechanism. After bioleaching combined with the Fenton-like reaction, SRF and CST decreased from 14.0 × 1012 to 0.178 × 1012 m/kg and from 24 to 7.7 s, respectively. The results indicated that the optimal H2O2 dosage was 20 mg/g DS (dry substance). Combined conditioning using Fenton oxidation and bioleaching proved to be more effective to improve sludge dewaterability compared with traditional Fenton oxidation or bioleaching conditioning. The dosage of H2O2 had a marked influence on sludge dewaterability during conditioning by bioleaching combined with the Fenton-like reaction. In conclusion, a combination of bioleaching and Fenton-like reaction can improve sludge dewaterability, and EPS dissolution, Fe3+ coagulation, transformation of bound water into free water may be responsible for improvement of sludge dewaterability.

References

1. 住房和城乡建设部. 关于2016年第三季度全国城镇污水处理设施建设和运行情况的通报[EB/OL]. http://www.mohurd.gov.cn
2. 周立祥. 污泥生物沥浸处理技术及其工程应用[J]. 南京农业大学学报, 2012, 35 (5): 154-166 [Zhou LX. Bioleaching role in improving sludge in-deep dewatering and removal of sludge-borne metals and its engineering application [J]. J Nanjing Agric Univ, 2012, 35 (5): 154-166]
3. He DQ, Wang LF, Jiang H, Yu HQ. A Fenton-like process for the enhanced activated sludge dewatering [J]. Chem Eng J, 2015, 272: 128-134
4. Yu WB, Yang JK, Shi YF, Song J, Shi Y, Xiao J, Li C, Xu XY, He S, Liang S, Wu X, Hu JP. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime [J]. Water Res, 2016, 95: 124-133
5. 宋永伟, 刘奋武, 周立祥. 微生物营养剂浓度对生物沥浸法促进城市污泥脱水性能的影响[J]. 环境科学, 2012, 33 (8): 2786-2792 [Song YW, Liu FW, Zhou LX. Effect of microbial nutrient concentration on improvement of municipal sewage sludge dewaterability through bioleaching [J]. Environ Sci, 2012, 33 (8): 2786-2792]
6. 刘奋武, 周立祥, 周俊, 姜峰. 生物沥浸处理提高城市污泥脱水性能的中试研究:连续运行模式[J]. 环境科学, 2011, 32 (10): 2023-2029 [Liu FW, Zhou LX, Zhou J, Jiang F. Improvement of municipal sewage sludge dewaterability by bioleaching: a pilot-scale study with a continuous plug flow reaction model [J]. Environ Sci, 2011, 32 (10): 2023-2029]
7. 陈泓, 宁寻安, 罗海健, 王玉洁, 刘敬勇, 杨佐毅, 阳重阳. 生物淋滤-Fenton对印染污泥脱水性能的影响[J]. 环境工程学报, 2014, 8 (4): 1641-1646 [Chen H, Ning XA, Luo HJ, Wang YJ, Liu JY, Yang ZY, Yang CY. Influence of bioleaching-Fenton oxidation on textile dyeing sludge dewatering performances [J]. Chin J Environ Eng, 2014, 8 (4): 1641-1646]
8. 霍敏波, 郑冠宇, 梁剑茹, 周立祥. 生物沥浸处理中微生物菌群和胞外聚合物对城市污泥脱水性能的影响[J]. 环境科学学报, 2014, 34 (9): 2199-2204 [Huo MB, Zheng GY, Liang JR, Zhou LX. Influence of microbial flora and extracellular plyometric substances on municipal sewage sludge dewaterability enhanced by bioleaching process [J]. Acta Scient Circum, 2014, 34 (9): 2199-2204]
9. 刘奋武, 周立祥. 不同能源物质配合及化学强化对生物沥浸法提高城市污泥脱水性能的效果[J]. 环境科学学报, 2009, 29 (5): 974-979 [Liu FW, Zhou LX. Enhancing dewaterability of municipal sewage sludge through the combined approaches of bioleaching and Fenton reaction [J]. Acta Sci Circum, 2009, 29 (5): 974-979]
10. 刘昌庚, 张盼月, 蒋娇娇, 曾成华, 黄毅, 徐国印. 生物沥浸耦合类Fenton氧化调理城市污泥[J]. 环境科学, 2015, 36 (1): 333-337 [Liu CG, Zhang PY, Jiang JJ, Zeng CH, Huang Y, Xu GY. Sewage sludge conditioning by bioleaching combined with Fenton-like oxidation [J]. Environ Sci, 2015, 36 (1): 333-337]
11. Huo MB, Zheng GY, Zhou LX. Enhancement of the dewaterability of sludge during bioleaching mainly controlled by microbial quantity change and the decrease of slime extracellular polymeric substances content [J]. Bioresour Technol, 2014, 168 (3): 190-197
12. Fontmorin JM, Sillanp?? M. Bioleaching and combined bioleaching/Fenton-like processes for the treatment of urban anaerobically digested sludge: Removal of heavy metals and improvement of the sludge dewaterability [J]. Sep Purif Technol, 2015, 156: 655-664
13. 宋兴伟, 周立祥. 生物沥浸处理对城市污泥脱水性能的影响研究[J]. 环境科学学报, 2008, 28 (10): 2012-2017 [Song XW, Zhou LX. The influence of bioleaching on dewaterability of municipal sewage sludge [J]. Acta Sci Circum, 2008, 28(10): 2012-2017]
14. Walter WG. Standard methods for the examination of water and wastewater [M]. Washington: American Public Health Association, 2005
15. Bo F, Palmgren R, Keiding K, Nielsen PH. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Res, 1996, 30 (8): 1749-1758
16. Nielsen PH, Keiding K. Disintegration of activated sludge flocs in presence of sulfide [J]. Water Res, 1998, 32 (2): 313-320
17. Burton K. A study of the conditions and mechanism of the dipheny-lamine reaction for the colorimetric estimation of deoxyribonucleic acid [J]. Biochem J, 1956, 62 (2):315-323
18. Chen Z, Zhang WJ, Wang DS, Ma T, Bai RY. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: Kinetics of enzymatic reaction and re-flocculation morphology [J]. Water Res, 2015, 83: 367-376
19. Novak JT. Dewatering of sewage sludge [J]. Drying Technol, 2006, 24 (10): 1257-1262
20. Chen YG, Chen YS, Gu GW. Influence of pretreating activated sludge with acid and surfactant prior to conventional conditioning on filtration dewatering [J]. Chem Eng J, 2004, 99 (2): 137-143
21. Raynaud M, Vaxelaire J, Olivier J, Dieudéfauvel E, Baudez JC. Compression dewatering of municipal activated sludge: Effects of salt and pH [J]. Water Res, 2012, 46 (14): 4448-4456
22. Wang LF, Wang LL, Li WW, He DQ, Jiang H, Ye XD, Yuan HP, Zhu NW, Yu HQ. Surfactant-mediated settleability and dewaterability of activated sludge [J]. Chem Eng Sci, 2014, 116 (116): 228-234
23. Liao YH, Zhou LX, Bai SY, Liang JR, Wang SM. Occurrence of biogenic schwertmannite in sludge bioleaching environments and its adverse effect on solubilization of sludge-borne metals [J]. Appl Geochem, 2009, 24 (9): 1739-1746
24. Wang WM, Song J, Han X. Schwertmannite as a new Fenton-like catalyst in the oxidation of phenol by H2O2 [J]. J Hazard Mater, 2013, 262 (8): 412-419
25. Mikkelsen LH, Keiding K. Physico-chemical characteristics of full scale sewage sludges with implications to dewatering [J]. Water Res, 2002, 36 (10): 2451-2462
26.

Memo

Memo:
-
Last Update: 2018-02-09