|Table of Contents|

Characteristics of photosynthesis and chlorophyll a fluorescence in Amorphophallus albus during vigorous growth under different light intensity* (PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2016 03
Page:
446-454
Research Field:
Articles
Publishing date:

Info

Title:
Characteristics of photosynthesis and chlorophyll a fluorescence in Amorphophallus albus during vigorous growth under different light intensity*
Author(s):
FU Zhong123 XIE Shiqing12 XU Wenguo4 YAN Suo4 & CHEN Junwen123**
1Yunnan Research Center on Good Agricultural Practice for Dominant Chinese Medicinal Materials, Yunnan Agriculture University, Kunming 650201, China 2Institute of Konjac, Yunnan Agriculture University, Kunming 650201, China 3College of Agronomy and Biotechnology, Yunnan Agriculture University, Kunming 650201, China 4Extension Center of Agricultural Technology of Dehong Prefecture, Mangshi, Yunnan 678400, China
Keywords:
The objective of the present study was to investigate the adaptive mechanism of Amorphophallus albus to different light intensities during the of vigorous growth period. The parameters of photosynthetic gas exchange and chlorophyll a fluorescence were ana
CLC:
S632.301 : Q945.79
PACS:
DOI:
10.3724/SP.J.1145.2015.10013
DocumentCode:

Abstract:
The objective of the present study was to investigate the adaptive mechanism of Amorphophallus albus to different light intensities during the of vigorous growth period. The parameters of photosynthetic gas exchange and chlorophyll a fluorescence were analyzed in A. albus grown under three light intensities (high, moderate and low light) usually received by A. albus in agricultural production. The results showed significant increases in dark respiration rate and apparent quantum yield with the decrease of light intensity (P < 0.05). The maximums of photosynthetic rate (Amax), intrinsic water use efficiency and carboxylation efficiency were found in individuals growing under low light, while the maximums of light compensation point and CO2 compensation point were recorded in those under high light. The response to simulated sunfleck was quicker in individuals grown under high light; the time to reach 30%, 50% and 90% of Amax decreased with increased initial stomatal conductance (Gs-initial) during the process of photosynthetic induction. Maximum photochemical efficiency of PSII in the light (Fv′/Fm′), actual photochemical efficiency of PSII in the light (ΔF/Fm′), non-photochemical quenching (NPQ) and electron transport rate (ETR) were found to be higher in individuals grown under low light; higher proportion of light energy were partitioned to non-photochemical quenching (ФNPQ) in individuals grown under high light, however, higher proportion were allocated to photochemical quenching (ΦPSⅡ) in individuals grown under moderate and low light. The results suggest that A. albus grown under moderate or low light would possess higher photosynthetic capacity and display enhanced photoprotection by increasing the capacity of heat dissipation. Correspondingly, high-light-grown A. albus has a fast response to sunfleck, and enhanced transition of PSII inhibition state to avoid irreversible photodamage to photosynthetic apparatus.

References

1 Salgado-Luarte C, Gianoli E. Herbivory may modify functional responses to shade in seedlings of a light-demanding tree species [J]. Funct Ecol, 2011, 25: 492-499 2 Bazzaz FA, Pickett STA. Physiological ecology of tropical succession: a comparative review [J]. Annu Rev Ecol S, 1980, 11: 287-310 3 Hallik L, Niinemets ?, Kull O. Photosynthetic acclimation to light in woody and herbaceous species: a comparison of leaf structure, pigment content and chlorophyll fluorescence characteristics measured in the field [J]. Plant Biol, 2012, 14: 88-99 4 Valladares F, Niinemets ?. Shade tolerance, a key plant feature of complex nature and consequences [J]. Annu Rev Ecol Evol S, 2008, 39: 237-257 5 Valladares F, Wright SJ, Lasso E, Kitajima K, Pearcy RW. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest [J]. Ecology, 2000, 81: 1925-1936 6 蔡志全, 曹坤芳, 郑丽. 6种热带雨林木本植物幼苗光合诱导的研究[J]. 植物生态学报, 2003, 27 (5): 617-623 [Cai ZQ, Cao KF, Zheng L. Photosynnthetic induction in seedlings of six tropical rainforest tree species [J]. Acta Phytoecol Sin, 2003, 27 (5): 617-623] 7 Pearcy RW. Sunflecks and photosynthesis in plant canopies [J]. Ann Rev Plant Physiol Mol Biol, 1990, 41: 421-453 8 李志真, 刘东焕, 赵世伟, 姜闯道, 石雷. 环境强光诱导玉簪叶片光抑制的机制[J]. 植物生态学报, 2014, 38 (7): 720-728 [Li ZZ, Liu DH, Zhao SW, Jiang CD, Shi L. Mechanisms of photoinhibition induced by high light in Hosta grown outdoors [J]. Acta Phytoecol Sin, 2014, 38 (7): 720-728] 9 Ort DR. When there is too much light [J]. Plant Physiol, 2001, 125: 29-32 10 张教林, 曹坤芳. 光照对两种热带雨林树种幼苗光合能力、热耗散和抗氧化系统的影响[J]. 植物生态学报, 2002, 26 (6): 639-646 [Zhang JL, Cao KF. The effect of irradiance on photosynthetic capacity, heat dissipation, and antioxidants of seedlings of two tropical rain forest tree species [J]. Acta Phytoecol Sin, 2002, 26 (6): 639-646] 11 尹赜鹏, 刘雪梅, 商志伟, 任静, 宋兴舜. 不同干旱胁迫下欧李光合及叶绿素荧光参数的响应[J]. 植物生理学报, 2011, 47 (5): 452-458 [Yin ZP, Liu XM, Shang ZW, Ren J, Song XS. Response of Photosynthesis and Chlorophyll Fluorescence Parameters to Different Drought Stress in Cerasus humilis Bunge. [J]. Plant Physiol J, 2011, 47 (5): 452-458] 12 李淑英, 王北洪, 马智宏, 黄文江, 周连第. 土壤水分含量对欧李叶绿素荧光及光合特性的影响[J]. 安徽农学报, 2007, 13 (14): 25-27 [Li SY, Wang BH, Ma ZH, Hang WJ, Zhou LD. Effects of soil water contents on chlorophyll fluorescence and photosynthesis characteristics of Cerasus humillis Bunge [J]. Anhui Agric Sci Bull, 2007, 13 (14): 25-27] 13 Yang XH,Chen XY,Ge QY,Li B,Tong YP,Zhang AM,Li ZS,Kuang TY,Lu CM. Tolerance of photosynthesis to photo inhibition, high temperature and drought stress in flag leaves of wheat: a comparison between a hybridization line and its parents grown under field conditions [J]. Plant Sci, 2006, 171: 389-397 14 Baker NR. A possible role for photosystemⅡ in environmental perturbations of photosynthesis [J]. Physiol Plantarum, 1991, 81: 563-570 15 Scott TL, Janusz A, Perkins MV, Megharaj M, Naidu R, Kirkbride KP. Effect of amphetamine precursors and by products on soil enzymes of two urban soils [J]. Bull Environ Contam Tox, 2003, 70: 824-831 16 刘佩瑛. 魔芋学[M]. 北京: 中国农业出版社, 2004: 15-20 [Liu PY. Konjac [M]. Beijing: Chinese Agriculture Press, 2004: 15-20] 17 谢世清. 魔芋的离体繁育及优质魔芋规范化栽培技术研究[M]. 昆明: 云南科技出版社, 2010: 57-58 [Xie SQ. In vitro Breeding of Amorphophallus and Quality Konjac Standardization Cultivation Techniques Research [M]. Kunming: Yunnan Science and Technology Press, 2010: 57-58] 18 徐燕, 郑毅, 毛昆明, 汤利, 朱有勇, 张福锁, 谢世清. 玉米魔芋间作条件下作物的氮素养分吸收规律研究[J]. 云南农业大学学报, 2007, 22 (6): 881-886 [Xu Y, Zheng Y, Mao KM, Tang L, Zhu YY, Zhang FS, Xie SQ. Nitrogen uptake and utilization of plant in maize and konjak intercropping [J]. J Yunnan Agric Univ, 2007, 22 (6): 881-886] 19 韩玙, 刘石山, 梁艳丽, 赵庆云, 李建, 徐文果, 岩对, 吴诗斌, 岩所, 刘春, 谢世清, 陈军文. 不同光照强度下花魔芋(Amorphophallus konjac)与谢君魔芋(Amorphophallus xiei)光合特性及光保护机制研究[J]. 植物研究, 2013, 33 (6): 676-683 [Han Y, Liu SS, Liang YL, Zhao QY, Li J, Xu WG, Yan D, Wu SB, Yan S, Liu C, Xie SQ, Chen JW. Photosynthesis and photorotection in Amorphophallus konjac and Amorphophallus xiei grown at a light gradient [J]. Bull Bot Res, 2013, 33 (6): 676-683] 20 Webb WL, Newton M, Starr D. Carbon dioxide exchange of Alnus rubra: A mathematical model [J]. Oecologia, 1974, 17: 281-291 21 Ehleringer JR. Carbon and water relations in desert plants: an isotopic perspective[M]//Ehleringer JR, AE Hall, GD Farquhar. Stable Isotopes and Plant Carbon-water Relations. San Diego: Academic Press, 1993: 155-172 22 许大全. 光合作用效率[M]. 上海: 上海科学技术出版社, 2002: 15-17, 120 [Xu DQ. Photosynthetic Efficiency [M]. Shanghai: Shanghai science and Technology Press, 2002: 15-17, 120] 23 Tausz M, Warren CR, Adams MA. Dynamic light use and protection from excess light in upper canopy and coppice leaves of Nothofagus cunninghamii in an old growth, cool temperature rainforest in Victoria, Australia [J]. New Phytol, 2005, 165: 143-156 24 Demmig-Adams B, Adams WWⅢ, Logan BA, Verhoeven AS. Xanthophyll cycle-dependent energy dissipation and flexible PSⅡ efficiency in plants acclimated to light stress [J]. Aust J Plant Physiol, 1995, 22: 261-276 25 Demmig-Adams B, Adams WWⅢ, Barker DH, Logan BA, Bowling DR, Verhoeven AS. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation [J]. Physiol Plantarum, 1996, 98: 253-264 26 Hendrickson L, Furbank RT, Chow WS. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence [J]. Photosynth Res, 2004, 82: 73-81 27 李键, 刘奕, 吴承祯, 洪滔, 林勇明, 林晗, 陈灿, 洪伟. 木麻黄的两种化感物质对其水培幼苗叶绿素荧光参数的影响[J]. 应用与环境生物学报, 2013, 19 (5): 781-786 [Li J, Liu Y, Wu CZ, Hong T, Lin YM, Lin H, Chen C, Hong W. Effect of two allelochemicals of Casuarina equisetifolia L. on chlorophyll fluorescence parameters in hydroponically cultured seedling [J]. Chin J Appl Environ Biol, 2013, 19 (5): 781-786] 28 胡义, 胡庭兴, 胡红玲, 陈洪, 王彬, 李晗. 干旱胁迫对香樟幼树生长及光合特性的影响[J]. 应用与环境生物学报, 2014, 20 (4): 675-682 [Hu Y, Hu TX, Hu HL, Chen H, Wang B, Li H. Effects of drought stress on growth and photosynthetic characteristics of Cinnamomum camphora saplings [J]. Chin J Appl Environ Biol, 2014, 20 (4): 675-682] 29 于贵瑞, 王秋凤. 植物光合、蒸腾和水分利用的生理生态学[M], 北京: 科学出版社, 2010: 372 [Yu GR, Wang QF. Ecophysiology of Plant Photosynthesis Transpiration, and Water Use [M]. Beijing: Science Press, 2010: 372] 30 Brooks A, Farquhar GD. Effect of temperature on the CO2/O2 specificity of ribulose-1,5 bisphosphate carboxylase/oxygenase and the rate of respiration in the light:estimates from gas_exchange measurements on spinach [J]. Planta, 1985, 165: 397-406 31 蔡时青, 许大全. 大豆叶片CO2补偿点和光呼吸的关系[J]. 植物生理学报, 2000, 26 (6): 545-550 [Cai SQ, Xu DQ. Relationship Between the CO2 Compensation point and photorespirationin soybean leaves [J]. Acta Phytophysiol Sin, 2000, 26 (6): 545-550] 32 梁文斌, 聂东伶, 吴思政, 柏文富, 沈素贞. 遮荫对短梗大参苗木光合作用及生长的影响[J]. 生态学杂志, 2015, 34 (2): 413-419 [Liang WB, Nie DL, Wu SZ, Bai WF, Shen SZ. Effects of shading on the growth and photosynthesis of Macropanax rosthornii seedlings. [J]. Chin J Ecol, 2015, 34 (2): 413-419] 33 缴丽莉, 路丙社, 周如久, 白志英, 梁海永, 甄红伟. 遮光对青榨槭光合速率及叶绿素荧光参数的影响[J]. 园艺学报, 2007, 34 (1): 173-178 [Jiao LL, Lu BS, Zhou RJ, Bai ZY, Liang HY, Zhen HW. Effects of shading on net photosynthetic rate and chlorophyll fluorescence parameters of leaf in david maple (Acer davidii Franch.) [J]. Acta Hortic Sci, 2007, 34 (1): 173-178] 34 张强, 陈军文, 陈亚军, 曹坤芳, 李保贵. 西双版纳热带雨林中两种生态型蕨类植物的光合特性比较研究[J]. 植物学通报, 2008, 25 (6): 673-679 [Zhang Q, Chen JW, Chen YJ, Cao KF, Li BG. Photosynthetic induction in two fernspecies with different eco-types in Xishuangbanna tropical rainforest [J]. Chin Bull Bot, 2008, 25 (6): 673-679] 35 Bai KD, Liao DB, Jiang DB, Cao KF. Photosynthetic induction in leaves of co-occurring Fagus lucida and Castanopsis lamontii saplings grown in contrasting light environments [J]. Trees, 2008, 22: 449-462 36 Kaiser H, Kappen L. In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understory [J]. J Exp Bot, 2000, 51: 1741-1749 37 Chazdon RL, Pearcy RW. Photosynthetic responses to light variation in rainforest species.Ⅰ. Induction under constant and fluctuating light conditions [J]. Oecologia, 1986, 69: 517-523 38 Harbinson J, Genty B, Baker NR. Relationship between the quantum efficiency of photosystem Ⅰ and Ⅱ in pea leaves [J]. Plant Physiol, 1989, 90: 1029-1034 39 Long SP, Bernacchi CJ. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error [J]. J Exp Bot, 2003, 54: 2393-2401 40 匡廷云. 作物光能利用效率与调控[M]. 济南: 山东科学技术出版社, 2004: 174-175 [Kuang TY. Photosynthetic Efficiency of Crops and Its Regulations [M]. Jinan: Shandong Science and Technology Press, 2004: 174-175] 41 颉敏华, 张继澍, 郁继华, 颉建明. D1蛋白周转和叶黄素循环在青花菜叶片强光破坏防御中的作用[J]. 中国农业科学, 2009, 42 (5): 1582-1589 [Xie MH, Zhang JS, Yu JH, Xie JM. The Role of D1 protein turnover and xanthophylls cycle in protecting photosynthetic apparatus of broccoli leaves against photodamage [J]. Sci Agric Sin, 2009, 42 (5): 1582-1589] 42 Aaxwell DP, Falk S, Trick CG, Huner NPA. Growth at low temperature mimics high-light acclimation in Chlorella vulgaris [J]. Plant Physiol, 1991, 105: 535-543 43 Maxwell K, Johnson GN. Chlorophyll fouorescence-a practical guide [J]. J Exp Bot, 2000, 51: 659-668 44 Quick WP, Stitt M. An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves [J]. Biochim Biophys Acta, 1989, 977: 287-296 45 Xu DQ, Wu S. Three phases of dark-recovery course from photoinhibition resolved by the chlorophyll fluorescence analysis in soybean leaves under field conditions [J]. Photosynthetica, 1996, 32: 417-423

Memo

Memo:
-
Last Update: 2016-06-25