|Table of Contents|

The trapping of rhizobia in waste V-Ti magnetite mine soils and theirsymbiotic nitrogen-fixing effects*(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2016 02
Page:
230-236
Research Field:
Articles
Publishing date:

Info

Title:
The trapping of rhizobia in waste V-Ti magnetite mine soils and theirsymbiotic nitrogen-fixing effects*
Author(s):
KANG Xia1 ZHENG Wenwen1 QU Kui1 CUI Yongliang2 LI Yanmei1 CHEN Qiang1 & YU Xiumei1**
1Faculty of Resources, Sichuan Agricultural University, Chengdu 611130, China2Sichuan Provincial Academy of Natural Resources, Chengdu 610041, China
Keywords:
rhizobia molecular identification waste V-Ti magnetite soil symbiotic nitrogou fixation sio-remediation
CLC:
S154.381
PACS:
DOI:
10.3724/SP.J.1145.2015.09025
DocumentCode:

Abstract:
The symbiosis of rhizobia and leguminous plants can provide nitrogen, enhance tolerance capacity for plants andincrease nitrogen accumulation in soil. It has been utilized in the bio-remediation of metalliferous sites. For the purpose ofbio-remediate the waste V-Ti magnetite mine soil, this research aimed to select native rhizobia with strong tolerance capacityagainst heavy metals. Using pot-wllture experiment method, soybean and cowpea were planted in the soil of a waste V-Timagnetite mine at Panzhihua, Sichuan Province, to capture and isolate the endophytic bacteria from root nodules. Rhizobiawere selected by molecule identification of BOX-A1R PCR fingerprinting and phylogenetic analysis of 16s rDNA. Plantexperiments using soybean and cowpea were performed in both waste mine soil and vermiculite with inoculation to assess thesymbiosis effect of rhizobia with legumes. As a result, a total of 43 endophytic bacteria were obtained from the root nodulesof soybean and cowpea. These 43 strains were clustered into 13 groups with a similarity level of 84%. Fifteen representativestrains were selected from the 13 groups to sequence for their 16S rDNA and construct phylogenetic tree, which showed thatonly ms12-11 and syj1 from group 8 were rhizobia. Both were identified as belonging to the genus of Bradyrhizobium. In thepot culture experiment with inoculations, both Bradyrhizobium sp. ms12-11 and syj1 could form effective nitrogen-fixingassociations with soybean and cowpea respectively in barren waste mine soil with high content of heavy metals. Nevertheless,the nitrogen-fixing efficiency of ms12-11 was significant higher than that of syj1. Due to the stress of heavy metals, thenitrogen-fixing efficiency of soybean and cowpea planted in the waste mine soil was significant lower than that in vermiculite.This study indicated that there are abundant rhizobia in the waste V-Ti magnetite mine soil. They can establish nitrogen-fixingsymbiosis with leguminous plants in adverse environment to strengthen plants’ tolerance against stress.

References

1 郭宇峰. 钒钛磁铁矿固态还原强化及综合利用研究[D]. 长沙: 中南大学, 2007 [Guo YF. Study on strengthening of solid-state reductionand comprehensive utilization of vanadiferous titanomagnetite [D].Changsha: Central South University, 2007]2 徐争启. 攀枝花钒钛磁铁矿区重金属元素地球化学特征[D]. 成都: 成都理工大学, 2009 [Xu ZQ. Geochemical characteristics of heavy metalsin different media in Panzhihua V-Ti-magnetite zone [D]. Chengdu:Chengdu University of Technology, 2009]3 盛继孚. 攀枝花钒钛磁铁矿资源亟待开发利用[J]. 四川省情, 2006 (6):20-20 [Sheng JF. Vanadium-titanium magnetite in Panzhihua is in urgentneed of development and utilization [J]. Sichuan Prov Cond, 2006 (6):20-20]4 庹先国, 徐争启, 滕彦国, 穆克亮. 攀枝花钒钛磁铁矿区土壤重金属地球化学特征及污染评价[J]. 矿物岩石地球化学通报, 2007, 26 (2): 127-131 [Tuo XG, Xu ZQ, Teng YG, Mu KL. The geochemical characteristics ofheavy metals in soils in the panzhihua V-Ti magnetite mine and the pollutionevaluation [J]. Bul Mineral Petrol Geochem, 2007, 26 (2): 127-131]5 周娅, 杨定清, 谢永红, 王棚. 攀枝花钒钛磁铁矿区土壤重金属污染特征及评价[J]. 西南农业学报, 2010, 23: 777-781 [Zhou Y, Yang DQ,Xie YH, Wang P. Distribution characteristics of heavy metals in soils inpanzhihua V-Ti mmagnetite mine and pollution evaluation [J]. SouthwestChina J Agr Sci, 2010, 23: 777-781]6 Purchase D, Miles RJ, Young TWK. Cadmium uptake and nitrogen fixingability in heavy-metal-resistant laboratory and field strains of Rhizobiumleguminosarum biovar trifolii [J]. FEMS Microbiol Ecol, 1997, 22 (1): 85-937 韦革宏, 马占强. 根瘤菌-豆科植物共生体系在重金属污染环境修复中的地位, 应用及潜力[J]. 微生物学报, 2010 (11): 1421-1430 [Wei GH,Ma ZQ. Application of rhizobia-legume symbiosis for remediation of heavymetalcontaminated soils [J]. Acta Microbiol Sin, 2010 (11): 1421-1430]8 Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, LópezR, Chamber MA, Palomares AJ. Isolation and characterisation ofsymbiotically effective Rhizobium resistant to arsenic and heavy metalsafter the toxic spill at the Aznalcollar pyrite mine [J]. Soil Biol Biochem,2005, 37 (6): 1131-11409 Chen WM, Wu CH, James EK, Chang JS. Metal biosorption capabilityof Cupriavidus taiwanensis and its effects on heavy metal removal bynodulated Mimosa pudica [J]. J Hazard Mater, 2008, 151 (2): 364-37110 Pajuelo E, Rodríguez-Llorente ID, Lafuente A, Caviedes M?. Legume–rhizobium symbioses as a tool for bioremediation of heavy metalpolluted soil [M]//Biomanagement of Metal-contaminated Soils.Netherlands: Springer, 2011: 95-12311 张志权, 束文圣, 廖文波, 蓝崇钰. 豆科植物与矿业废弃地植被恢复[J]. 生态学杂志, 2002, 21: 47-52 [Zhang ZQ, Shu WS, Liao WB, LanCY. Role of legume species in revegetation of mined wastelands [J].Chin J Ecol, 2002, 21: 47-52]12 曾树. 若尔盖草原棘豆属植物根瘤菌遗传多样性及系统发育研究[D]. 雅安: 四川农业大学, 2008 [Zeng S. Genetic divesity andphylogeny of rhizobia isolated from Oxytropis in Ruoergai plateau,Sichuan, China [D]. Ya’an: Sichuan Agricultural University, 2008]13 刘永秀, 张福锁, 毛达如. 根际微生态系统中豆科植物-根瘤菌共生固氮及其在可持续农业发展中的作用[J]. 中国农业科技导报, 1999,1: 28-33 [Liu YX, Zhang FS, Mao DR. The role of symbiotic nitrogenfixation in sustainable agriculture [J]. Rev China Agric Sci Technol,1999, 1: 28-33]14 陈文新, 陈文峰, 隋新华, 李颖. 高效利用豆科植物-根瘤菌共生固氮作用减少化肥面源污染[C] //全国农业面源污染综合防治高层论坛论文集. 北京: 中国农业大学生物学院, 2008 [ChenWX, Chen WF, Sui XH, Li Y. Reduction of grochemicals diffusedpollution by utilization of highly efficient legume-rhizobia symbioticnitrogen fixation [C]//Conference Proceedings of High-level Forum ofNational Integrated Control of Agricultural Point Source and DiffusedPollution. Beijing: College of Biological Sciences of China AgriculturalUniversity, 2008]15 Burd GI, Dixon DG, Glick BR. Plant growth-promoting bacteria thatdecrease heavy metal toxicity in plants [J]. Can J Microbiol, 2000, 46 (3):237-24516 Reichman SM. The potential use of the legume–rhizobium symbiosisfor the remediation of arsenic contaminated sites [J]. Soil Biol Biochem,2007, 39 (10): 2587-259317 Ma Y, Prasad MNV, Rajkumar M, Freitas H. Plant growth promotingrhizobacter ia and endophytes accelerate phytoremediation ofmetalliferous soils [J]. Biotechnol Adv, 2011, 29 (2): 248-25818 Vincent, JM. A Manual for the Practical Study of the Root-noduleBacteria [M]. Oxford: Blackwell, 197019 Terefework Z, Kaijalainen S, Lindstr?m K. AFLP fingerprinting as a toolto study the genetic diversity of Rhizobium galegae isolated from Galegaorientalis and Galega officinalis [J]. J Biotechnol, 2001, 91 (2): 169-18020 陈晓琴, 陈强, 张世熔, 赵芯, 赵珂, 吴翔. 流沙河流域土壤自生固氮菌数值分类及BOX-PCR研究[J]. 农业环境科学学报, 2006 (14): 528-532 [Chen XQ, Chen Q, Zhang SR, Zhao X, Zhao K, Wu X. Taxonomyand BOX-PCR analysis of free-living dizotrophs isolated from soils inLiusha river valley [J]. J Agro Environ Sci, 2006 (14): 528-532]21 Sun LN, Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF.Genetic diversity and characterization of heavy metal-resistantendophyticbacteria from two copper-tolerant plant species on coppermine wasteland [J]. Bioresource Technol, 2010, 101 (2): 501-50922 Altschul SF, Madden TL, Sch?ffer AA, Zhang JH, Zhang Z, Miller W,Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of proteindatabase search programs [J]. Nucleic Acids Res, 1997, 25 (17): 3389-340223 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6:molecular evolutionary genetics analysis version 6.0 [J]. Mol Biol Evol,2013, 30 (12): 2725-272924 Khalid A, Arshad M, Zahir ZA. Screening plant growth promotingrhizobacteria for improving growth and yield of wheat [J]. J ApplMicrobiol, 2004, 96 (3): 473-48025 吕伟仙, 葛滢, 吴建之, 常杰. 植物中硝态氮, 氨态氮, 总氮测定方法的比较研究[J]. 光谱学与光谱分析, 2004, 24 (2): 204-206 [Lü WX, GeY, Wu JZ, Chang J. Study on the method for the determination of nitricnitrogen, ammoniacal nitrogen and total nitrogen in plant [J]. SpectroscSpect Anal, 2004, 24 (2): 204-206]26 Adams ML, Norvell WA, Philpot WD, Peverly JH. Toward the discriminationof manganese, znic, copper, and iron deficiency in ‘Bragg’ soybean usingspectral detection methods [J]. Agron J, 2000, 92 (2): 268-27427 Kopittke PM, Asher CJ, Kopittke RA, Menzies NW. Toxic effects ofPb2+ on growth of cowpea (Vigna unguiculata) [J]. Environ Pollut, 2007,150 (2): 280-28728 Yu XM, Li YM, Zhang C, Liu HY, Liu J, Zheng WW, Kang X, Leng XJ,Zhao K, Gu YF, Zhang XP, Xiang QJ, Chen Q. Culturable Heavy Metal-Resistant and Plant Growth Promoting Bacteria in V-Ti Magnetite MineTailing Soil from Panzhihua [J]. PLoS ONE, 2013, 9 (9): 1-829 陈文新, 汪恩涛. 中国根瘤菌[M]. 北京: 科学出版社, 2011: 66-71[Chen WX, Wang ET. Chinese Rhizobia [M]. Beijing: Science Press,2011: 66-71]30 Bhuvaneswari TV, Turgeon BG, Bauer WD. Early events in the infectionof soybean (Glycine max L. Merr) by Rhizobium japonicum I. Localizationof infectible root cells [J]. Plant Physiol, 1980, 66 (6): 1027-103131 Silva FV, De Meyer SE, Sim?es-Araújo JL, da Costa Barbé T, XavierGR, O’Hara G, Ardley JK, Rumjanek NG, Willems A, Zilli JE.Bradyrhizobium manausense sp. nov., isolated from effective nodules ofVigna unguiculata grown in Brazilian Amazonian rainforest soils [J].Int J Syst Evol Microbiol, 2014, 64 (Pt 7): 2358-236332 Ren DW, Chen WF, Sui XH, Wang ET, Chen WX. Rhizobium vignae sp.nov., a symbiotic bacterium isolated from multiple legume species [J].Int J Syst Evol Microbiol, 2011, 61 (3): 580-58633 Zaidi A, Wani PA, Khan MS. Toxicity of heavy metals to legumes andbioremediation [M]. New York City: Springer Science & BusinessMedia, 201234 Rajkumar M, Sandhya S, Prasad MNV, Freitas H. Perspectives of plantassociatedmicrobes in heavy metal phytoremediation [J]. BiotechnolAdv, 2012, 30 (6): 1562-157435 Khan MS, Zaidi A, Wani PA, Oves M. Role of plant growth promotingrhizobacteria in the remediation of metal contaminated soils [J]. EnvironChem Lett, 2009, 7 (1): 1-1936 Wani PA, Khan MS, Zaidi A. Chromium-reducing and plant growthpromotingMesorhizobium improves chickpea growth in chromiumamendedsoil [J]. Biotechnol Lett, 2008, 30 (1): 159-16337 Wani PA, Khan MS, Zaidi A. Effect of metal tolerant plant growthpromoting Bradyrhizobium sp.(vigna) on growth, symbiosis, seed yield andmetal uptake by greengram plants [J]. Chemosphere, 2007, 70 (1): 36-45

Memo

Memo:
-
Last Update: 2016-04-25