|Table of Contents|

Influences of intercropping Paspalum notatum on the olives rhizosphere microenvironment and drought resistant physiology* (PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2016 03
Page:
455-461
Research Field:
Articles
Publishing date:

Info

Title:
Influences of intercropping Paspalum notatum on the olives rhizosphere microenvironment and drought resistant physiology*
Author(s):
YANG Hongwei12 LI Zilong13 LIANG Shukun4 JIAO Jian5 & LI Chaozhou12**
1College of Life Science and Technology, Gansu Agricultural University,?Lanzhou 730070, China 2Gansu?Key Laboratory of Crop Genetics & Germplasm Enhancement, Lanzhou 730070, China 3Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 4Linyi University, Linyi 276005, China 5College of Forestry Science, Gansu Agricultural University,?Lanzhou 730070, China
Keywords:
This study aimed to investigate the influences of intercropping Paspalum notatum on the olive rhizosphere microenvironment and drought resistant physiology. Ten-year-old olive plants were used as experimental materials to measure the indexes of rhizospher
CLC:
Q945.79
PACS:
DOI:
10.3724/SP.J.1145.2015.09017
DocumentCode:

Abstract:
This study aimed to investigate the influences of intercropping Paspalum notatum on the olive rhizosphere microenvironment and drought resistant physiology. Ten-year-old olive plants were used as experimental materials to measure the indexes of rhizosphere microenvironment and drought resistant physiology, including the physical and chemical characteristics of the rhizosphere soil, the soil enzymes activities and the olive leaves’ resistant physiology. The results showed that with intensified drought stress, the membrane stability index (MSI) of olive leaves decreased, while superoxide anion production rate and the contents of MDA and H2O2 increased, indicating drought stress as the cause of the oxidative stress and injuries of olive leaves. The intercropping of P. notatum alleviated the increase of superoxide anion production rate and the contents of MDA and H2O2, therefore helped to increase MSI. It also promoted the contents of soluble sugar, proline, Vc and GSH contents and the activities of SOD, POD and CAT, meanwhile improved the soil fertility related enzymes activities, the organic matter content and the root activity of olive. MSI, proline, CAT, soil invertase and root activities increased significantly under water -2 treatments, compared with non-intercropping P.notstum, by 20.2%, 14.9%, 24.3%, 177.9% and 15.9%, respectively. In summary, intercropping P. notatum improves the soil microenvironment and enhances the antioxidant abilities of olive, thus promotes the drought resistance of olive plants.

References

1 秦淑莲, 魏淑秋. 中国与世界生物气候相似研究[M]. 北京: 海洋出版社, 1994 [Qin SL, Wei SQ. A Study on the Similarities Between China and the World [M]. Beijing: China Ocean Press, 1994] 2 尹东, 张旭东. 基于GIS的甘肃省油橄榄气候适宜性区划[J]. 经济林研究, 2009, 27 (4): 65-69 [Yin D, Zhang XD. GIS Based demarcation of olive climatic suitability in Gansu Province [J]. Nonwood For Res, 2009, 27 (4): 65-69] 3 巩文. 甘肃省经济林栽培区划研究[J]. 经济林研究, 2003, 2l (2): 37-39 [Gong W. Study on the division of economic forest cultivation in Gansu Province [J]. Nonwood For Res, 2003, 2 l (2): 37-39] 4 周者军. 油橄榄陇南落户记[N]. 甘肃日报, 2007-12-25(5) [Zhou ZJ. Oil olive was settled in Longnan [N]. Gansu Daily, 2007-12-25(5)] 5 徐纬英, 王贺春. 油橄榄及其栽培技术[M]. 北京: 中国林业出版社, 2004 [Xu WY, Wang HC. Olive and Its Cultivation Techniques [M]. Beijing: Chinese Forestry Press, 2004] 6 孙守家, 孟平, 张劲松, 黄辉, 万贤崇. 华北石质山区核桃-绿豆复合系统氘同位素变化及其水分利用[J]. 生态学报, 2010, 30 (14): 3717-3726 [Sun SJ, Meng P, Zhang JS, Huang H, Wan XC. Deuterium isotope variation and water use in an agroforestry system in the rocky mountainous area of North China [J]. Acta Ecol Sin, 2010, 30 (14): 3717-3726] 7 曾明, 马国辉, 余东, 熊丙全, 袁军. 生草栽培对柑桔丛枝菌根形成及果实品质的影响[J]. 中国农学通报, 2005, 21 (9): 304-309 [Zeng M, Ma GH, Yu D, Xiong BQ, Yuan J. Effects of SOD Culture management in citrus orchard on the arbuscular mycorrhizal infection in citrus roots and on the fruit quality [J]. Chin Agric Sci Bull, 2005, 21 (9): 304-309] 8 Cavigelli MA, Thien SJ. Phosphorus bioavailability following incorporation of green manure crops [J]. Soil Sci Soc Am J, 2003, 67: 1186-1190 9 Ishii T, Shrestha YH, Kadoya K. Effect of a sod culture system of Bahia grass (Paspalum notatum Flgge.) on vesicular arbuscular mycorrhizal formation of Satsuma Mandarin trees [J]. Proc Int Soc Citricult, 1996, 2: 822-824 10 李自龙, 徐雪风, 焦健, 令凡, 李朝周. 不同品种油橄榄离体叶片对渗透胁迫的生理响应及其抗旱机制[J]. 西北植物学报, 2014, 34 (9): 1808-1814 [Li ZL, Xu XF, Jiao J, Ling F, Li CZ. Physiological responses and Mechanism of drought resistance in leaves of different Ovlie varieties under osmotic stress [J]. Acta Bot Bor-Occid Sin, 2014, 34 (9): 1808-1814] 11 Li YJ, Zhang YL, Ning DL, He N, Chen F, Gen SX, Chen HY, Mao YL. Evaluation of drought resistance of Ovlie varieties from difference provenance [J]. Agric Sci Technol, 2014, 15 (11): 1905-1907 12 李自龙, 焦健, 徐雪风, 任丽娟, 杨别亮, 陈东, 王开祥, 李朝周. 硝酸型和硫酸型酸胁迫下油橄榄离体叶片的抗性生理比较[J]. 应用与环境生物学报, 2014, 20 (6): 999-1004 [Li Zl, Jiao J, Ren LJ, Yang BL, Chen D, Wang KX, Li CZ. A comparison of resistant physiology of Olive excised leaves under stress of nitric-rich acid sulphur-rich acid [J]. Chin J Appl Environ Biol, 2014, 20 (6): 999-1004] 13 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 1999 [Bao SD. Soil and Agricultural Chemistry Analysis [M]. Beijing: China Agriculture Press, 2000] 14 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 1999: 166-187 [Lu RK. Methods of soil agricultural chemical analysis [M]. Beijing: China Agriculture Science Press, 1999: 166-187] 15 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986: 260-360 [Guan SM. Soil Enzyme and Research Method [M]. Beijing: Agriculture Press,1986: 260-360 ] 16 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000 [Li HS. Experimental Principle and Technology of Plant Physiology and Biochemistry [M]. Beijing: Higher Education Press,2000 ] 17 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000 [Zou Q. Experimental Guide for Plant Physiology [M]. Beijing: China Agriculture Press, 2000 ] 18 陈毓荃. 生物化学实验方法和技术[M]. 北京: 科学出版社, 2009 [Chen YQ. Bio Chemical Experiment Method and Technology [M]. Beijing: Science Press,2009 ] 19 李 玲. 植物生理学模块实验指导[M]. 北京: 科学出版社, 2009 [Li L. Experimental Guide for Plant Physiology [M]. Beijing: Science Press, 2009 ] 20 张志良, 瞿伟菁, 张小方. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2009 [Zhang ZL, Qu QJ, Zhang XF. Experimental Guide for Plant Physiology [M]. Beijing: Higher Education Press, 2009 ] 21 Huang BR, Gao HW. Root physiological characteristics associated with drought resistance in tall fescue cultivars [J]. Crop Sci, 2000, 40: 196-203 22 Avidano L, Gamalero E, Cossa GP, Carraro E. Characterization of soil health in an Italian polluted site by using microorganisms as bioindicators [J]. Appl Soil Ecol, 2005, 30: 21-33 23 Tabatabai MA. Soil enzymes [C]//Weaver RW, Angle JS, Bottomley PS. Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties. Madison: Soil Science Society of America, 1994: 775-833 24 张成娥, 杜社妮, 白岗栓, 梁银丽. 黄土源区果园套种对土壤微生物及酶活性的影响[J]. 土壤与环境, 2001, 10 (2): 122-123 [Zhang CE, Du SN, Bai GS, Liang YL. Influence of intercropping in the garden on soil microbe and enzymatic activity in highland of Loess Plateau [J]. Soil Environ Sci, 2001, 10 (2): 122-123] 25 Robertson GP, Groffman PM. Nitrogen transformations[C]//Paul EA. Soil Microbiology, Ecology, and Biochemistry. Amsterdam & Boston: Elsevier, 2007: 341-364 26 Lin C, Wang F, Li Y, Qing H, Chun M, Lin XJ. Effects of different fertilizer application strategies on nutrients and enzymatic activities in yellow clayey soil [J]. Soils Fertil Sci China, 2009 (6): 24-27 27 Lü CH, Zheng FL, An SS. The characteristics of soil enzyme activities and nutrients during vegetation succession [J]. Agric Res Arid Areas, 2009, 27 (2): 227-232 28 杨阳, 吴凤芝. 套作不同化感潜力分蘖洋葱对黄瓜生长及土壤微环境的影响. 应用与环境生物学报[J], 2011, 22 (10): 2627-2634 [Yang Y, Wu FY. Effects of intercropping Chinese onion cultivars of different allelopathic potential on cucumber growth and soil micro-environment [J]. Chin J Appl Environ Biol, 2011, 22 (10): 2627-2634] 29 刘景辉, 赵海超, 任永峰, 张向前, 王莹. 土壤水分胁迫对燕麦叶片渗透调节物质含量的影响[J]. 西北植物学报, 2009, 29 (7): 1432-1436 [Liu JH, Zhao HC, Ren YF, Zhang XQ, Wang Y. Change of osmotica in oat leaf under soil moisture stress [J]. Acta Bot Bor-Occid Sin, 2009, 29 (7): 1432-1436] 30 郑浩, 王义祥, 翁伯琦. 合理套种牧草对山地果园生物环境和土壤肥力的影响[J]. 福建农业学报, 2005, 20: 134-138 [Zhen H, Wang YX, Wen BQ. Effects of pasturage intercropping on bio-environment and soil fertility in hilly orehards [J]. Fujian J Agric Sci, 2005, 20: 134-138] 31 Sharma SS, Dietz KJ. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress [J]. J Exp Bot, 2006, 57: 711-726 32 Selote DS, Khanna-Chopra R. Drought acclimation confers oxidative stress tolerance by inducing coordinated antioxidant defense at cellular and subcellu-lar level in leaves of wheat seedlings [J]. Physiol Plant, 2006, 127: 494-500 33 Sofo A, Dichio B, Xiloyannis C, Masia A. Antioxidant defences in olive trees during drought stress: changes in activity of some antioxidant enzymes [J]. Funct Plant Biol, 2005, 32: 45-53 34 Han G, Dong Q, Zhao ZH. Response of antioxidation protection system of Hedysarum scoparium to drought stress [J]. Acta Bot Bor-Occid Sin, 2008, 28 (5): 1007-1013 35 Reddy AR, Chaitanya KV, Jutur PP, Sumithra K. Differential antioxidative responses to water stress among five mulberry (Morusalba L. ) cultivars [J]. Environ Exp Bot, 2004, 52: 33-42 36 Shao HB, Chu LY, Shao MA, Jaleel CA, Mi HM. Higher plant antioxidants and redox signaling under environmental stresses [J]. Comptes Rendus Biol, 2008, 331: 433-441 37 单长卷, 韩蕊莲, 梁宗锁. 黄土高原冰草叶片抗坏血酸和谷胱甘肽合成及循环代谢对干旱胁迫的生理响应[J]. 植物生态学报, 2011, 35 (6): 653-662 [Shan CJ, Han RL, Liang ZS. Responses to drought stress of the biosynthetic and recycling metabolism of glutathione and ascorbate in Agropyron cristatum leaves on the Loess Plateau of China [J]. China J Plants Ecol, 2011, 35 (6): 653-662 ]

Memo

Memo:
-
Last Update: 2016-06-25