|Table of Contents|

Effect of overexpression of chorismate mutase encoding gene ARO7 on theinhibitor tolerance of Saccharomyces cerevisiae(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2016 02
Page:
201-205
Research Field:
Articles
Publishing date:

Info

Title:
Effect of overexpression of chorismate mutase encoding gene ARO7 on theinhibitor tolerance of Saccharomyces cerevisiae
Author(s):
ZHANG Mingming1 WAN Qingqing2 ZHANG Keyu2 XIONG Liang1 BAI Fengwu1 2 & ZHAO Xinqing2**
1School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China2State Key Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
Keywords:
cellulosic ethanol Jerusalem artichoke stalks Saccharomyces cerevisiae aromatic amino acid ARO7 acetic acidyeast stress tolerance
CLC:
TQ920.1
PACS:
DOI:
10.3724/SP.J.1145.2015.09013
DocumentCode:

Abstract:
Fuel ethanol production using lignocellulosic materials has attracted widespread attention. However, inhibitorycompounds (e.g. weak acid, phenol and furfural) released from the pretreatment process exert inhibition on yeast cell growthand ethanol fermentation. Therefore, improvement of inhibitors tolerance of Saccharomyces cerevisiae benefits efficientcellulosic ethanol production. In this work, chorismate mutase encoding gene ARO7 which participates in aromatic aminoacid biosynthesis was overexpressed in S. cerevisiae, the cell growth and ethanol production of the recombinant strain in thepresence of inhibitory compounds were evaluated. It was found that the ARO7 overexpressing strain grew better than thecontrol strain in the presence of 5.0 g/L acetic acid. Similar result was found when ethanol fermentation was performed with 5.0g/L acetic acid addition. In addition, ethanol yield of the ARO7 overexpressing strain was improved from 0.44 g/g to 0.47 g/gglucose, and the ethanol productivity increased 22.38% when compared with the control strain using Jerusalem artichoke stalkshydrolysate. This work demonstrated that overexpression of ARO7 would be a feasible strategy to increase cellulosic ethanolproduction efficiency in the presence of inhibitors.

References

1 Jonsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose:inhibitors and detoxification [J]. Biotechnol Biofuels, 2013, 6: 162 李科, 靳艳玲, 甘明哲, 刘晓风, 赵海. 木质纤维素生产燃料乙醇的关键技术研究现状[J]. 应用与环境生物学报, 2008, 14 (6): 877-884 [Li K,Jin YL, Gan MZ, Liu XF, Zhao H. Progress in research of key techniquesfor ethanol production from lignocellulose [J]. Chin J Appl EnvironBiol, 2008, 14 (6): 877-884]3 Beltrame P, Beltrame PL, Carniti P, Guardione D, Lanzetta C. Inhibitingaction of chlorophenols on biodegradation of phenol and its correlation withstructural properties of inhibitors [J]. Biotechnol Bioeng, 1988, 31 (8): 821-8284 赵心清, 张明明, 徐桂红, 许建韧, 白凤武. 酿酒酵母乙酸耐性分子机制的功能基因组进展[J]. 生物工程学报, 2014, 30 (3): 368-380[Zhao XQ, Zhang MM, Xu GH, Xu JR, Bai FW. Advances in functionalgenomics studies underlying acetic acid tolerance of Saccharomycescerevisiae [J]. Chin J Biotechnol, 2014, 30 (3): 368-380]5 Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G. Inhibition effects offurfural on aerobic batch cultivation of Saccharomyces cerevisiae growingon ethanol and/or acetic acid [J]. J Biosci Bioeng, 2000, 90: 374-3806 徐桂红, 赵心清, 李宁, 白凤武. 锌离子提高絮凝酵母乙酸胁迫耐受性[J]. 化工学报, 2012, 63: 1823-1829 [Xu GH, Zhao XQ, Li N, Bai FW.Improvement of acetic acid tolerance of self-flocculating yeast by zincsupplementation [J]. CIESC J, 2012, 63: 1823-1829]7 Wei N, Quarterman J, Kim SR, Cate JH, Jin YS. Enhanced biofuelproduction through coupled acetic acid and xylose consumption byengineered yeast [J]. Nat Commun, 2013, 4: 1-8.8 Zhao XQ, Bai FW. Mechanisms of yeast ethanol tolerance and itsmanipulation for efficient fuel ethanol production [J]. J Biotechnol, 2009,144 (1): 23-309 Ding MZ, WangX, YangY, Yuan YJ. Metabolomic study of interactiveeffects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae[J]. Omics, 2011, 15 (10): 647-65310 Mira NP, Teixeira MC, Sá-Correia I. Adaptive response and tolerance toweak acids in Saccharomyces cerevisiae: a genome-wide view [J]. Omics,2010, 14: 525-54011 Wan C, Zhang MM, Fang Q, Xiong L, Zhao XQ, Hasunuma T, Bai FW,Kondo A. The impact of zinc sulfate addition on the dynamic metabolicprofiling of Saccharomyces cerevisiae subjected to long term acetic acidstress treatment and identification of key metabolites involved in theantioxidant effect of zinc [J]. Metallomics, 2015, 7: 322-33212 Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, ShimizuH. Comprehensive phenotypic analysis for identification of genesaffecting growth under ethanol stress in Saccharomyces cerevisiae [J].FEMS Yeast Res, 2009, 9 (1): 32-4413 Suzuki T, Sugiyama M, Wakazono K, Kaneko Y, Harashima S. Lacticacidstress causes vacuolar fragmentation and impairs intracellularamino-acid homeostasis in Saccharomyces cerevisiae [J]. J BiosciBioeng, 2012, 113 (4): 421-43014 Hirasawa T, Yoshikawa K, Nakakura Y, Nagahisa K, Furusawab C,Katakuraa Y, Shimizub H, Shioyaa S. Identification of target genesconferring ethanol stress tolerance to Saccharomyces cerevisiae basedon DNA microarray data analysis [J]. J Biotechnol, 2007, 131 (1): 34-4415 He LY, Zhao XQ, Bai FW. Engineering industrial Saccharomycescerevisiae strain with the FLO1-derivative gene isolated from theflocculating yeast SPSC01 for constitutive flocculation and fuel ethanolproduction [J]. Appl Energ, 2012, 100: 33-4016 Zhang MM, Zhao XQ, Cheng C, Bai FW. Improved growth and ethanolfermentation of Saccharomyces cerevisiae in the presence of aceticacid by overexpression of SET5and PPR1 [J]. Biotechnol J, 2015,DOI: 10.1002/biot.20150050817 Teste M, Duquenne M, Fran Ois JM, Parrou J. Validation of referencegenes for quantitative expression analysis by real-time RT-PCR inSaccharomyces cerevisiae. Bmc Mol Biol, 2009, 10: 9918 Medina VG, Almering MJ, Maris AJV, Pronk JT. Elimination of glycerolproduction in anaerobic cultures of a Saccharomyces cerevisiae strainengineered to use acetic acid as an electron acceptor [J]. Appl EnvironMicrob, 2010, 76: 190-19519 李勇昊, 张晓月, 程诚, 袁文杰, 赵心清, 白凤武. 菊芋全植株生产燃料乙醇的工艺探讨[J]. 生物产业技术, 2014 (6): 23-29 [Li YH, ZhangXY, Cheng C, Xiong L, Yuan WJ, Zhao XQ, Bai FW. Exploration of theprocess for fuel ethanol production from Jerusalem artichoke whole plant[J]. Biotechnol Biobusiness, 2014 (6): 23-29]20 Li BZ, Yuan YJ. Transcriptome shifts in response to furfural and aceticacid in Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 2010,86 (6): 1915-192421 Slininger PJ, Gorsich SW, Liu ZL. Culture nutrition and physiologyimpact the inhibitor tolerance of the yeast Pichia stipitis NRRL Y-7124[J]. Biotechnol Bioeng, 2009, 102: 778-79022 Chen H, Fink GR. Feedback control of morphogenesis in fungi byaromatic alcohols [J]. Gene Dev, 2006, 20: 1150-116123 Ball SG, Wickner RB, Cottarel G, Schaus M, Tirtiaux C. Molecularcloning and characterization of ARO7-OSM2, a single yeast genenecessary for chorismate mutase activity and growth in hypertonicmedium [J]. Mol Gen Gent, 1986, 205: 326-33024 方青, 张明明, 陈洪奇, 熊亮, 赵心清, 白凤武, 过表达谷氧还蛋白基因GRX5提高酿酒酵母乙酸耐性[J]. 化工学报, 2015, 4 (66): 1434-1439 [Fang Q, Zhang MM, Chen HQ, Xiong L, Zhao XQ, Bai FW,Improvement of acetic acid tolerance of Saccharomyces cerevisiae byoverexpressing glutaredoxin encoding gene GRX5 [J]. CIESC J, 2014, 4(66): 1434-1439]25 魏小文, 马翠, 熊亮, 张明明, 赵心清, 白凤武. 液泡蛋白酶B对酿酒酵母高温乙醇发酵效率的影响[J]. 微生物学通报, 2015, 42 (10): 1-6 [WeiXW, Ma C, Xiong L, Zhang MM, Zhao XQ, Bai FW. Effect of vacuolarproteinase B on high temperature ethanol fermentation of Saccharomycescerevisiae [J]. Microbiology China, 2015, 42 (10): 1-6]

Memo

Memo:
-
Last Update: 2016-04-25