|Table of Contents|

Effects of enclosure time on the activity of methanotrophs in soils of the Inner Mongolia grassland(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2016 01
Page:
8-12
Research Field:
Articles
Publishing date:

Info

Title:
Effects of enclosure time on the activity of methanotrophs in soils of the Inner Mongolia grassland
Author(s):
MA Tianli1 CHEN Huai1 2** KANG Xiaoming3 & WANG Yanfen4
1State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of Forestry, Northwest A&F University, Yangling 712100, China 2Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 3Institute of Wetland Research, Chinese Academy of Forestry, Beijing 100091, China 4University of Chinese Academy of Sciences, Beijing 100049, China
Keywords:
grassland Inner Mongolia enclosure methanotroph methanotrophic activity Q10
CLC:
X171 (226)
PACS:
DOI:
10.3724/SP.J.1145.2015.05024
DocumentCode:

Abstract:
This study aimed to investigate the methanotrophic activity and its response to global warming with different enclosure time. We chose typical grasslands in Xilin River Basin of Inner Mongolia, China to investigate the methanotrophic activity at 18 °C and 28 °C under different enclosure treatments: 79E (grassland enclosed since 1979), 99E (grassland enclosed since 1999) and G (freely-grazed grassland). The main methods included laboratory incubation experiment and the collection of CH4 flux data. The results showed that at 18 °C, the methanotrophic activity was 0.032 μg g-1 h-1 for 79E, 0.012 μg g-1 h-1 for 99E, and 0.024 μg g-1 h-1 for G. At 28 °C, the methanotrophic activity was 0.042 μg g-1h-1, 0.031 μg g-1 h-1 and 0.055 μg g-1 h-1, respectively. The methanotrophic activity of 79E was found to have the lowest sensitivity to temperature change, while 99E had the highest one. The methanotrophic activity in all three treatments increased along with the temperature. Taking into account the methanotrophs potential and comparing the in situ CH4 fluxes, we concluded that grassland can remove more CH4 under the future global warming trend.

References

1 Cicerone RJ, Oremland RS. Biogeochemical aspects of atmospheric methane [J]. Global Biogeochem Cy, 1988, 2: 299-327
2 Curry CL. Modeling the soil consumption of atmospheric methane at the global scale [J]. Global Biogeochem Cy, 2007, 21: 1-15
3 Hanson RS, Hanson TE. Methanotrophic bacteria [J]. Microbiol Rev, 1996, 60: 439-471
4 Wise MG, McArthur JV, Shimkets LJ. Methylosarcina fibrata gen. nov., sp nov and Methylosarcina quisquiliarum sp nov., novel type I methanotrophs [J]. Int J Syst Evol Microbiol, 2001, 51: 611-621
5 Dedysh SN, Berestovskaya YY, Vasylieva LV, Belova SE, Khmelenina VN, Suzina NE, Trotsenko YA, Liesack W, Zavarzin GA. Methylocella tundrae sp nov., a novel methanotrophic bacterium from acidic tundra peatlands [J]. Int J Syst Evol Microbiol, 2004, 54: 151-156
6 岳进, 梁史.甲烷氧化菌研究进展[J]. 生态学杂志, 2004, 23: 198-205 [Yue J, Liang S.Advances in the research of methanotroph [J]. Chin J Ecol, 2004, 23:198-205]
7 Zheng Y, Yang W, Sun X, Wang SP, Rui YC, Luo CY, Guo LD. Methanotrophic community structure and activity under warming and grazing of alpine meadow on the Tibetan Plateau [J]. Appl Microbiol Biotechnol, 2012, 93: 2193-2203
8 Zhou XQ, Wang YF, Huang XZ, Hao YB, Tian JQ, Wang JZ. Effects of grazing by sheep on the structure of methane-oxidizing bacterial community of steppe soil [J]. Soil Biol Biochem, 2008, 40: 258-261.
9 Chen W, Wolf B, Yao Z, Brüggemann N, Butterbach-Bahl K, Liu C, Han S, Han X, Zheng X. Annual methane uptake by typical semiarid steppe in Inner Mongolia [J]. JGR: Atmospheres, 2010, 115: D15108
10 Geng YB, Luo GQ, Yuan GF. CH4 uptake flux of Leymus chinensis steppe during rapid growth season in Inner Mongolia, China [J]. Sci China-Earth Sci, 2010, 53: 977-983
11 Liu C, Holst J, Brüggemann N, Butterbach-Bahl K, Yao Z, Yue J, Han S, Han X, Krümmelbein J, Horn R, Zheng X. Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China [J]. Atmos Environ, 2007, 41: 5948-5958
12 Ma X, Wang S, wang Y, Jiang G, Nyren P. Short-term effects of sheep excrement on carbon dioxide, nitrous oxide and methane fluxes in typical grassland of Inner Mongolia [J]. New Zeal J Agric Res, 2006, 49: 285-297
13 Wang J, Song C, Zhang J, Wang L, Zhu X, Shi F. Temperature sensitivity of soil carbon mineralization and nitrous oxide emission in different ecosystems along a mountain wetland-forest ecotone in the continuous permafrost of Northeast China [J]. Catena, 2014, 121: 110-118
14 李政海,王炜,刘钟龄. 退化草原围封恢复过程中草场质量动态的研究[J]. 内蒙古大学学报, 1995, 26: 334-338 [Li ZH, Wang W, Liu ZL. Research on the pasture quality of degraded steppe during closed recovering progress [J]. J Inner Mongol Univ, 1995, 26: 334-338 ]
15 刘凤婵, 李红丽, 董智, 张昊. 封育对退化草原植被恢复及土壤理化性质影响的研究进展[J]. 中国水土保持科学, 2012, 10: 116-122 [Liu FC, Li HL, Dong Z, Zhang H. Advances in research on enclosure effects on vegetation restoration and soil physicochemical property of degraded grassland [J]. Sci Soil Water Convers, 2012, 10: 116-122 ]
16 Wang Y, Xue M, Zheng X, Ji B, Du R, Wang Y. Effects of environmental factors on N2O emission from and CH4 uptake by the typical grasslands in the Inner Mongolia [J]. Chemosphere, 2005, 58: 205-215
17 Zhou X, Hao Y. Effect of 5 years long cessation of grazing on methane uptake in a semi-arid grassland [J]. Pol J Ecol, 2010, 58: 801-804
18 耿远波, 章申, 董云社, 孟维奇, 齐玉春, 陈佐忠, 王艳芬. 草原土壤的碳氮含量及其与温室气体通量的相关性[J]. 地理学报, 2001, 56: 44-53 [Geng YB, Zhang S, Dong YS, Meng WQ, Qi YC, Chen ZZ, Wang YF. The content of soil organic carbon and total nitrogen and correl activity between their content and fluxes of CO2, N2O and CH4 in Xilin River Basin Steppe [J]. Acta Geogr Sin, 2001, 56: 44-53
19 Chen W, Wolf B, Yao Z, Brüggemann N, Butterbach-Bahl K, Liu C, Han S, Han X, Zheng X. Annual methane uptake by typical semiarid steppe in Inner Mongolia [J]. JGR: Atmospheres, 2010, 115: D15108
20 闫玉春, 唐海萍, 常瑞英, 刘亮. 典型草原群落不同围封时间下植被、土壤差异研究[J]. 干旱区资源与环境, 2008, 22: 145-151[Yan YC, Tang HP, Chang RY, Liu L. Study on the difference of vegetation and soil in typical steppe communities under different fenced time[J]. J Arid Land Res Environ, 2008, 22: 145-151]
21 王跃思, 薛敏, 黄耀, 刘广仁, 王明星, 纪宝明. 内蒙古天然与放牧草原温室气体排放研究[J]. 应用生态学报, 2003, 14: 372-376 [Wang YS, Xue M, Huang Y, Liu GR, Wang MX, Ji BM. Greenhouse gases emission or uptake in Inner Mongolia natural and free-grazing grasslands [J]. Chin J Appl Ecol, 2003, 14: 372-376
22 Qi Y, Dong Y, Yang X, Geng Y, Liu L, Li M. Effects of grazing on carbon dioxide and methane fluxes in typical temperate grassland in Inner Mongolia, China [J]. Res Sci, 2003, 27: 103-109
23 Wang Y, Hu Y, Ji B, Liu G, Xue M. Research of grazing efects on greenhouse gas emission in Inner Mongolian grasslands [J]. China Environ Sci, 2002, 22: 490-494
24 Wang G, Du R, Wang Y, Liu g, Wang Y, Chen Z, Lu D. Characteristics of N2O and CH4 and their seasonal variations from Inner Mongolia grassland [J]. Acta Ages Sin, 1998, 6: 306-311
25 Dong Y, Zhang S, Qi Y, Chen Z, Geng Y. Fluxes of CO2, N2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation [J]. Chin Sci Bull, 2000, 45: 1590-1594
26 Holst J, Liu C, Yao Z, Brüggemann N, Zheng X, Giese M, Butterbach-Bahl K. Fluxes of nitrous oxide, methane and carbon dioxide during freezing–thawing cycles in an Inner Mongolian steppe [J]. Plant Soil, 2008, 308: 105-117
27 马秀枝. 开垦和放牧对内蒙古草原土壤碳库和温室气体通量的影响[D]. 北京: 中国科学院研究生院(植物研究所), 2006 [Ma X. Effects of cultivation and grazing on soil carbon pool and greenhouse gases fluxes in the Inner Mongolia Steppes [D]. Beijing: Graduate School of the Chinese Academy of Sciences, 2006]
28 Wang Y, Chen H, Zhu Q, Peng C, Wu N, Yang G, Zhu D, Tian J, Tian L, Kang X, He Y, Gao Y, Zhao X. Soil methane uptake by grasslands and forests in China [J]. Soil Biol Biochem, 2014, 74: 70-81
29 王海瑞. 典型草原退化群落不同恢复演替阶段土壤物理性质及渗水性能的研究[D]. 呼和浩特: 内蒙古大学, 2010 [Wang H. The study of soil physical properties and infiltration capacity of typical glassland in different recovery stages [D]. Hohhot: Inner Monglia University, 2010]
30 戎郁萍, 韩建国, 王培, 毛培胜. 放牧强度对草地土壤理化性质的影响[J]. 中国草地, 2001, 23: 41-47 [Rong YP, Han JG, Wang P, Mao PS. The effects of grazing Intensity on soil physics and chemical properties [J]. Gra Chin, 2001, 23: 41-47]
31 Papen H, Daum M, Stenkamp R, Butterbach-bahl K. N2O and CH4 fluxes from soils of a N-limited and N-fertilized spruce forest ecosystem of the temperate zone [J]. J Appl Bot, 2001, 75: 159-163
32 郑聚锋, 张平究, 潘根兴, 李恋卿, 张旭辉. 长期不同施肥下水稻土甲烷氧化能力及甲烷氧化菌多样性的变化[J]. 生态学报, 2008, 28: 4864-4872 [Zheng JF, Zhang PJ, Pan GX, Li LQ, Zhang XH. Effect of long term different fertilization on methane oxidation potential and diversity of methanotrophs of paddy soil [J]. Acta Ecol Sin, 2008, 28: 4864-4871

Memo

Memo:
-
Last Update: 2016-02-25