|Table of Contents|

Ferrous sulfate improving buanol production of wheat straw hydrolysate by Clostridium acetobutylicum CICC8012(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2015 03
Page:
447-454
Research Field:
Articles
Publishing date:

Info

Title:
Ferrous sulfate improving buanol production of wheat straw hydrolysate by Clostridium acetobutylicum CICC8012
Author(s):
LI Renqiang JIN Yanling GAO Xiaofeng ZHANG Guohua ZHAO Hai
1Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 4College of Pharmacy, Henan University, Kaifeng 475001, China
Keywords:
Clostridium acetobutylicum CICC8012 cellulosic hydrolysate ferrous sulfate in situ detoxification fuel butanol
CLC:
TQ923
PACS:
DOI:
10.3724/SP.J.1145.2014.04012
DocumentCode:

Abstract:
Wheat straw, a common agricultural residual, was utilized in this study as raw material to produce solvents including acetone, ethanol and butanol (ABE). To remove the inhibition of the inhibitors in the wheat straw hydrolysate, ferrous sulfate was used for in situ detoxification of the fermentation medium, resulting in improved solvent production and fermentation efficiency, together with reduced residual sugar and intermediates concentrations. Four crucial factors including sugar concentration, inoculum ratio, ferrous sulfate concentration and fermentation time were chosen to optimize fermentation conditions with response surface methodology. The optimal conditions predicted by the model were sugar concentration of 50 g/L, inoculum ratio of 10%, ferrous sulfate concentration of 0.4 g/L and fermentation time of 65 h, to obtain butanol concentration of 7.35 g/L. The verification experiment achieved a butanol concentration of 7.33 g/L, indicating the reliability of the model. Additionally, rice straw and corn straw hydrolysate media were also detoxified with ferrous sulfate to obtain improvement similar to wheat straw hydrolysate, showing the extensive effectiveness of the detoxification method.

References

1 刘力强, 李丽萍, 李立强, 米造吉, 谢萍, 黄品奇, 王正品. 生物丁醇燃料产业化制造中的问题及发展趋势[J]. 生物产业技术, 2008, 5: 36-38 [Liu LQ, Li LP, Li LQ, Mi ZJ, Xie P, Huang PQ, Wang ZP. Issues and development trend of biobutanol fuel in industrial manufacture [J]. Biotechnol Ind, 2008, 5: 36-38]
2 谢光辉, 王晓玉, 任兰天. 中国作物秸秆资源评估研究现状[J]. 生物工程学报, 2010, 26 (7): 855-863 [Xie GH, Wang LY , Ren TL. China’s crop residues resources evaluation [J]. Chin J Biotech, 2010, 26 (7): 855-863]
3 沈兆兵, 杜风光, 史吉平, 董青山, 王文博. 丙酮丁醇生产技术进展[J]. 广州化工, 2007, 35 (5): 8-9 [Shen ZB, Du FG, Shi JP, Dong QS, Wang WB. The progress of butano-l acetone production technology [J]. Guangzhou Chem Ind, 2007, 35 (5): 5-9]
4 Schwarz WH, Gapes JR. Butanol-rediscovering a renewable fuel [J]. BioWorld Eur, 2006, 1: 16-19
5 Qureshi N, Saha BC, Cotta MA. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii [J]. Bioprocess Biosyst Eng, 2007, 30 (6): 419-427
6 Dürre P. Biobutanol: an attractive biofuel [J]. Biotechnol J, 2007, 2 (12): 1525-1534
7 孙彦平, 靳艳玲, 郜晓峰, 李新波, 肖瑶, 赵海. 纤维素酸解副产物对Clostridium acetobutylicum CICC8012发酵的影响[J]. 应用与环境生物学报, 2010, 16 (6): 845-850 [Sun YP, Jin YL, Gao XF, Li XB, Xiao Y, Zhao H. The effects of several dilute acid hydrolysate by-products of lignocellulose on butanol fermentation by Clostridium acetobutylicum CICC8012 [J]. Chin J Appl Environ Boil. 2010, 16 (6): 845-850]
8 庄军平, 林鹿, 庞春生, 刘颖, 孙勇. 木质纤维素稀水解液脱毒研究进展[J]. 现代化工, 2009, 29 (2): 19-23 [Zhuang JP, Lin L, Pang CS, Liu Y, Sun Y. Research advances in detoxification of lignocellulose hydrolysates-making [J]. Mod Chem Ind, 2009, 29 (2): 19-23]
9 Du TF, He AY, Wu H, Chen JN, Kong XP, Liu Jl, Jiang M, Ouyang PK. Butanol production from acid hydrolyzed corn fiber with Clostridium beijerinckii mutant [J]. Bioresour Technol, 2013, 135: 254-261
10 袁忠娣, 潘丽军, 杨培周. 复合诱变选育丙酮丁醇梭菌发酵玉米秸秆水解液[J]. 安徽农业科学, 2011, 39 (24): 14778-14781 [Yuan ZD, Pan LJ, Yang PZ. Screening of Clostridium acetobutylicum for fermentation of corn fiber hydrolysate by complex mutagenesis [J]. J Anhui Agric Sci, 2011, 39 (24): 14778 -14781]
11 Girbal L, Vasconcelos I, Silvie Saint A, Soucaille P. How neutral red modified carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH [J]. FEMS Microbiol Rev, 1995, 16: 151-162
12 Giovani BMC, Solange IM, Elisangela JC, Joao BAS. Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes [J]. J Chem Technol Biotechnol, 2006, 81: 152-157
13 Lee J, Mitchell WJ, Tangney M, Blaschek HP. Evidence for the presence of alternative glucose transport system in Clostridium beijerinckii NCIMB 8052 and the solvent hyper-producing mutant BA101 [J]. Appl Environ Microbiol. 2005, 71: 3384-3387
14 Ezeji T, Qureshi N, Blaschek HP. Butanol production from agricultural residues: impact of degradation products on Clostridium beijerinckii growth and butanol fermentation [J]. Biotechnol Bioengin, 2007, 97 (6): 1460-1469
15 陈守文, 马昕. 稻草酶法水解液的丙酮丁醇发酵[J]. 工业微生物, 1998, 28 (4): 30-34 [Chen SW, Ma X, Wang LS, Zhao XH. Acetone-butanol fermentation of rice straw enzymatic hydrolysate [J]. Ind Microbiol, 1998, 28 (4): 30-34]
16 Junelles AMR, Janatiidrissi H, Petitdemange RG. Iron effect on acetone butanol fermentation [J]. Curr Microbiol, 1988, 17: 299-303
17 Ezeji T, Blaschek HP. Fermentation of dried distillers’ grains and solubles (DDGS) hydrolysates to solvent and value-added products by solventogenic clostridia [J]. Bioresour Technol, 2008, 99: 5232-5242
18 李冬敏, 陈洪章. 汽爆秸秆膜循环酶解耦合丙酮丁醇发酵[J]. 过程工程学报, 2007, 7 (6): 1212-1216 [Li DM, Chen HZ. Fermentation of acetone and butanol coupled with enzymatic hydrolysis of steam exploded cornstalk stover in a membrane reactor [J]. Chin J Process Eng, 2007, 7 (6): 1212-1218]
19 林有胜, 王竞, 王旭明, 孙晓红. 利用响应曲面法优化秸秆水解液的丁醇发酵条件研究[J]. 科学通报, 2010, 56 (36): 3463-3468 [Lin YS, Wang J, Wang XM, Sun XH. Optimization of butanol production from corn straw hydrolysate by Clostridium acetobutylicum using response surface method [J]. Chin Sci Bull, 2011, 56 (36): 3463-3468]
20 Qureshi N, Ezeji T C, Ebener J, Bruce SD, Michael AC, Hans PB. Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber [J]. Bioresour Technol, 2008, 99: 5915-5922
21 代志凯, 张翠, 阮征. 试验设计和优化及其在发酵培养基优化中的应用[J]. 微生物学通报, 2010, 37 (6): 894-903 [Dai ZK, Zhang C, Ruan Z. The application of experimental design and optimization techniques in optimization of microbial medium [J]. Microbiol China, 2010, 37 (6): 894-903]
22 Mielenz JR. Ethanol production from biomass: technology and commercialization status [J]. Ecol Ind Microbiol, 2001, 4 (3): 324-329
23 Zverlov V, Verezina O, Velikodvorskaya GA. Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery [J]. Appl Micro Biotechnol, 2006, 71: 587-597
24 Lu C, Dong J, Yang ST. Butanol production from wood pulping hydrolysate in an integrated fermentation-gas stripping process [J]. Bioresour Technol, 2013, 143: 467-475
25 Guo T, He AY, Du TF, Zhu DW, Liang DF, Jiang M, Wei P, Ouyang PK. Butanol production from hemicellulosic hydrolysate of corn fiber by a Clostridium beijerinckii mutant with high inhibitor-tolerance [J]. Bioresour Technol, 2013, 135: 379-385
26 Cai D, Zhang T, Zheng J, Chang Z, Wang Z, Qin PY, Tan TW. Biobutanol from sweet sorghum bagasse hydrolysate by a hybrid pervaporation process [J]. Bioresour Technol, 2013, 145: 97-102
27 Huang JC, Meagher M, Pervaporative recovery of n-butanol from aqueous solutions and ABE fermentation broth using thin-film silicalite-filled silicone composite membranes [J]. J Membrane Sci, 2001, 192: 231-242
28 Peguin S, Goma G, Delorme P, Soucaille P. Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen [J]. Appl Microbiol Biotechnol, 1994, 42: 611-616
29 Zhu Y, Yang ST. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum [J]. J Biotechnol, 2004, 110: 143-157

Memo

Memo:
-
Last Update: 2015-06-23