|Table of Contents|

Characteristics, application and formation mechanisms of aerobic granular sludge: recent advances(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2014 04
Research Field:
Publishing date:


Characteristics, application and formation mechanisms of aerobic granular sludge: recent advances
WANG Shuo YU Shuili XU Qiao FU Qiang LI Ji
1School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China 2State Environment Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), Tsinghua University, Beijing 100084, China 3State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
aerobic granular sludge granulation process extracellular polymeric substances wastewater treatment formation mechanisms

Aerobic granular sludge has attracted much attention for its high settling property, biomass retention, and contaminant removal efficiency as well as the subsequent low space requirement and operation expense in wastewater treatment plant. This review provides recent advances in study of aerobic granular sludge, including the formation process from floc sludge, formation influencing factors and physical, chemical and biological sludge characteristics. Many studies demonstrated the importance of aerobic granular sludge in treatment of domestic sewage, high-concentration organic wastewater and wastewater containing toxic and hazardous materials, which means that nitrogen, phosphorus, organics, toxic substance and heavy metal can be effectively removed by aerobic granular sludge. In addition, the formation mechanism of aerobic granular sludge is generally shown to be the formation of extracellular polymeric substances and their flocculation. Finally, the review discusses the problems and possible future trends of aerobic granular sludge: the aerobic granular sludge technology is promising in enhancing the efficiency of wastewater treatment if the technical bottlenecks of formation period and conditions are passed through.


1 Sunil A, Lee D, Show KY. Aerobic granular sludge: recent advances [J]. Biotechnol Adv, 2008, 26 (5): 411-423
2 彭永臻, 吴蕾, 马勇. 好氧颗粒污泥的形成机制、特性及应用研究进展[J]. 环境科学, 2010, 31 (2): 273-281 [Peng Y, Wu L, Ma Y. Advances: granulation mechanism, characteristics and application of aerobic sludge granules [J]. Environ Sci, 2010, 31 (2): 273-281]
3 Zita A, Hermansson M. Determination of bacterial cell surface hydrophobicity of single cells in cultures and in wastewater in situ [J]. FEMS Microbiol Let, 1997, 152 (2): 299-306
4 Wilen BM, Onuki M, Mino T. Microbial community structure in activated sludge floc analysed by fluorescence in situ hybridization and its relation to floc stability [J]. Water Res, 2008, 42 (8-9): 2300-2308
5 张英, 郎咏梅, 赵玉晓, 李善评. 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36 (4): 56-59 [Zhang Y, Lang Y, Zhao Y. Research on technique of aerobic granular sludge cultivation by seeding EGSB anaerobic granular sludge [J]. J Shandong Univ, 2006, 36 (4): 56-59]
6 Liu Y, Tay J. State of the art of biogranulation technology for wastewater treatment [J]. Biotechnol Adv, 2004, 22 (7): 533-563
7 Tay J, Liu Q, Liu Y. Characteristics of aerobic granules grown on glucose and acetate in sequential aerobic sludge blanket reactors [J]. Environ Technol, 2002, 23 (8): 931-936
8 Tay J, Pan S, He Y. Effect of organic loading rate on aerobic ganulation: Part II. Characteristics of aerobic granules [J]. J Environ Eng, 2004, 130 (10): 1102-1109
9 Zheng Y, Yu H, Sheng G. Physical and chemical characteristics of granular activated sludge from a sequencing batch airlift reactor [J]. Proc Biochem, 2005, 40 (2): 645-650
10 Sunil A, Chen M, Lee D. Degradation of phenol by aerobic granules and isolated yeast Candida Tropicalis [J]. Biotechnol Bioeng, 2007, 96 (5): 844-852
11 Schwarzenbeck N, Borges JM, Wilderer PA. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor [J]. Appl microbiol biotechnol, 2005, 66 (6): 711-718
12 Wang S, Liu X, Yu H. Aerobic granulation with brewery wastewater in a sequencing batch reactor [J]. Bioresour Technol, 2007, 98 (11): 2142-2147
13 Wang S, Liu X, Gong W. Aerobic granulation for 2, 4-dichlorophenol biodegradation in a sequencing batch reactor [J]. Chemosphere, 2007, 69 (5): 769-775
14 Jiang H, Tay J, Maszenan AM. Bacterial diversity and function of aerobic granules engineered in a sequencing batch reactor for phenol degradation[J]. Appl Environ Microbiol, 2004, 70 (11): 6767-6775
15 Sunil A, Lee D, Ren N. Biodegradation of pyridine using aerobic granules in the presence of phenol [J]. Water Res, 2007, 41 (13): 2903-2910
16 Sunil A, Lee D. Single-culture aerobic granules with Acinetobacter calcoaceticus [J]. Appl Microbiol Biotechnol, 2008, 78 (3): 551-557
17 Bao R, Yu S, Wu J. Contaminants conversion processes and removal by aerobic granular sludge at low temperature [J]. J Biotechnol, 2008, 136: 670
18 Bao R, Yu S, Shi W. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor at low temperature [J]. J Hazard Mater, 2009, 168 (2-3): 1334-1340
19 Mahoney EM, Varangu LK, Cairns WL. The effect of calcium on microbial aggregation during UASB reactor start-up [J]. Water Sci Technol, 1987, 19 (1-2): 249-260
20 Jiang H, Tay J, Liu Y. Ca2+ augmentation for enhancement of aerobically grown microbial granules in sludge blanket reactors [J]. Biotechnol Lett, 2003, 25 (2): 95-99
21 Li X, Liu Q, Yang Q. Enhanced aerobic sludge granulation in sequencing batch reactor by Mg2+ augmentation [J]. Bioresour Technol, 2009, 100 (1): 64-67
22 McSwain BS, Irvine RL, Wilderer PA. The influence of settling time on the formation of aerobic granules [J]. Water Sci Technol, 2004, 50 (10): 195-202
23 Beun JJ, Hendriks A, van Loosdrecht MCM. Aerobic granulation in a sequencing batch reactor [J]. Water Res, 1999, 33 (10): 2283-2290
24 Williams JC, de los Reyes FL. Microbial community structure of activated sludge during aerobic granulation in an annular gap bioreactor [J]. Water Sci Technol, 2006, 54 (1): 139-146
25 Yang S, Li X, Yu H. Formation and characterisation of fungal and bacterial granules under different feeding alkalinity and pH conditions [J]. Proc Biochem, 2008, 43 (1): 8-14
26 Liu Y, Tay J. Influence of cycle time on kinetic behaviors of steady-state aerobic granules in sequencing batch reactors [J]. Enzyme Microbiol Technol, 2007, 41 (4): 516-522
27 Zheng Y, Yu H, Liu S. Formation and instability of aerobic granules under high organic loading conditions [J]. Chemosphere, 2006, 63 (10): 1791-1800
28 Wang Z, Li Y, Liu Y. The influence of short-term starvation on aerobic granules [J]. Proc Biochem, 2006, 41 (12): 2373-2378
29 McSwain BS, Irvine RL, Wilderer PA. The effect of intermittent feeding on aerobic granule structure [J]. Water Sci Technol, 2004, 49 (11-12): 19-25
30 Liu Y, Tay J. Influence of starvation time on formation and stability of aerobic granules in sequencing batch reactors [J]. Bioresour Technol, 2008, 99 (5): 980-985
31 Qin L, Tay J, Liu Y. Selection pressure is a driving force of aerobic granulation in sequencing batch reactors [J]. Proc Biochem, 2004, 39 (5): 579-584
32 Jiang H, Tay J, Tay S. Aggregation of immobilized activated sludge cells into aerobically grown microbial granules for the aerobic biodegradation of phenol [J]. Lett Appl Microbiol, 2002, 35 (5): 439-445
33 Sunil A, Lee D, Lai J. Effects of aeration intensity on formation of phenol-fed aerobic granules and extracellular polymeric substances [J]. Appl Microbiol Biotechnol, 2007, 77 (1): 175-182
34 Liu Y, Liu Q. Causes and control of filamentous growth in aerobic granular sludge sequencing batch reactors [J]. Biotechnol Adv, 2006, 24 (1): 115-127
35 Li J, Garny K, Lindenblatt C. Comparison of some characteristics of aerobic granules and sludge flocs from sequencing batch reactors [J]. Water Sci Technol, 2007, 55 (8-9): 403-411
36 de Kreuk MK, Pronk M, van Loosdrecht MCM. Formation of aerobic granules and conversion processes in an aerobic granular sludge reactor at moderate and low temperature [J]. Water Res, 2005, 39 (18): 4476-4484
37 Liu Y, Lin Y, Yang S. A balanced model for biofilms developed at different growth and detachment forces [J]. Proc Biochem, 2003, 38 (12): 1761-1765
38 Mu Y, Yu H. Rheological and fractal characteristics of granular sludge in an upflow anaerobic reactor [J]. Water Res, 2006, 40 (19): 3596-3602
39 Mu Y, Ren T, Yu H. Drag coefficient of porous and permeable microbial granules [J]. Environ Sci Technol, 2008, 42 (5): 1718-1723
40 Sunil A, Chang C, Lee D. Hydraulic characteristics of aerobic granules using size exclusion chromatography [J]. Biotechnol Bioeng, 2008, 99 (4): 791-799
41 李军, 周延年, 何梅. 城市污水处理厂好氧颗粒污泥的特性[J]. 应用与环境生物学报, 2008, 14 (5): 640-643 [Li J, Zhou Y, He M. Characteristics of aerobic granules from a municipal wastewater treatment plant [J]. Chin J Appl Environ Biol, 2008, 14 (5): 640-643]
42 Liu Y, Yang S, Tay J. Cell hydrophobicity is a triggering force of biogranulation [J]. Enz Microbiol Technol, 2004, 34 (5): 371-379
43 SchmidtJE, Ahring BK. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket reactors [J]. Appl Microbiol Biotechnol, 1994, 42 (2-3): 457-462
44 McSwain BS, Irvine RL, Wilderer PA. Composition and distribution of extracellular polymeric substances in aerobic flocs and granular sludge [J]. Appl Environ Microbiol, 2005, 71 (2): 1051-1057
45 Whiteley AS, Bailey MJ. Bacterial community structure and physiological state within an industrial phenol bioremediation system [J]. Appl Environ Microbiol, 2000, 66 (6): 2400-2407
46 Snaidr J, Amann R, Huber I. Phylogenetic analysis and in situ identification of bacteria in activated sludge [J]. Appl Environ Microbiol, 1997, 63 (7): 2884-2896
47 Winker M, Kleerebezem R, de Bruin L. Microbial diversity differences within aerobic granular sludge and activated sludge flocs [J]. Appl Microbiol Biotechnol, 2013, 97 (16): 7447-7458
48 Bassin J, Pronk M, Muyzer G. Effect of elevated salt concentrations on the aerobic granular sludge process: linking microbial activity within microbial community structure [J]. Appl Environ Microbiol, 2011, 77 (22): 7942-7953
49 Ebrahimi S, Gabus S, Rohrbach-Brandt E. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees, 30 degrees and 35 degrees [J]. Appl Microbiol Biotechnol, 2010, 87 (4): 1555-1568
50 Zhao Y, Huang J, Zhao H. Microbial community and N removal of aerobic granular sludge at high COD and N loading rates [J]. Bioresour Technol, 2013, 143: 439-446
51 陈国科, 黄钧, 毕京芳. 好氧颗粒污泥耐受高碳氮负荷过程中的群感效应[J]. 应用与环境生物学报, 2014, 20 (1): 73-79 [Chen G, Huang J, Bi J. Quorum sensing of aerobic granular sludge tolerating high carbon and nitrogen loads [J]. Chin J Appl Environ Biol, 2014, 20 (1): 73-79]
52 Lv J, Wang Y, Zhong C. The effect of quorum sensing and extracellular proteins on the microbial attachment of aerobic granular activated sludge [J]. Bioresour Technol, 2013, 152: 53-58
53 Wan C, Zhang P, Lee D. Disintegration of aerobic granules: role of second messenger cyclic di-GMP [J]. Bioresour Technol, 2013, 146: 330-335
54 Zhang S, Yu X, Guo F. Effect of interspecies quorum sensing on the formation of aerobic granular sludge [J]. Water Sci Technol, 2011, 64 (6): 1284-1290
55 Feng L, Wu Z, Yu X. Quorum sensing in water and wastewater treatment biofilms [J]. J Environ Biol, 2013, 34: 437-444
56 Hu Z, Lotti T, van Loosdrecht MCM. Nitrogen removal by a nitritation-anammox bioreactor at low temperature [J]. Appl Environ Microbiol, 2013, 79 (8): 2807-2812
57 Jang A, Yoon Y, Bishop PL. Characterization and evaluation of aerobic granules in sequencing batch reactor [J]. J Biotechnol, 2003, 105 (1-2): 71-82
58 Mosquera-Corral A, de Kreuk MK, van Loosdrecht MCM. Effects of oxygen concentration on N-removal in an aerobic granular sludge reactor [J]. Water Res, 2005, 39 (12): 2676-2686
59 Picioreanu C, van Loosdrecht MCM, Heijnen JJ. Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach [J]. Biotechnol Bioeng, 1998, 58 (1): 101-116
60 de Kreuk MK, Heijnen JJ, van Loosdrecht MCM. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge [J]. Biotechnol Bioeng, 2005, 90 (6): 761-769
61 Lopez-Vazquez CM, Christine M, van Loosdrecht MCM. Modeling the PAO–GAO competition: effects of carbon source, pH and temperature [J]. Water Res, 2009, 43 (2): 450-462
62 Lin Y, Liu Y, Tay J. Development and characteristics of phosphorous-accumulating granules in sequencing batch reactor [J]. Appl Microbiol Biotechnol, 2003, 62 (4): 430-435
63 Cassidy DP, Belia E. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge [J]. Water Res, 2005, 39 (19): 4817-4823
64 Lemaire R, Yuan Z, Blackall LL. Microbial distribution of Accumulibacter spp. and Competibacter spp. in aerobic granules from a lab-scale biological nutrient removal system [J]. Environ Microbiol, 2008, 10 (2): 354-363
65 Schwarzenbeck N, Erley R, Wilderer PA. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter [J]. Water Sci Technol, 2004, 49 (11-12): 41-46
66 Moy BY, Tang J, Toh SK. High organic loading influences the physical characteristics of aerobic sludge granules [J]. Lett Appl Microbiol, 2002, 34 (6): 407-412
67 Liu Y, Xu H, Yang S. A general model for biosorption of Cd2+ Cu2+ and Zn2+ by aerobic granules [J]. J Biotechnol, 2003, 102 (3): 233-239
68 Liu Y, Yang S, Xu H. Biosorption kinetics of Cadmium (II) on aerobic granular sludge [J]. Proc Biochem, 2003, 38 (7): 997-1001
69 Xu H, Liu Y, Tay J. Effect of pH on nickel biosoption by aerobic granular sludge [J]. Bioresour Technol, 2005, 97 (2): 359-363
70 Sun X, Liu C, Ma Y. Enhanced Cu (II) and Cr(VI) biosorption capacity on poly (ethylenimine ) grafted aerobic granular sludge [J]. Coll Surf B, 2011, 82 (2): 456-462
71 Tay S, Moy BY, Tay J. Rapid cultivation of stable aerobic phenol-degrading granules using acetate-fed granules as microbial seed [J]. J Biotechnol, 2005, 115 (4): 387-395
72 Stuermer DH, Ng DJ, Morris CJ. Organic contaminants in groundwater near an underground coal gasification site in northeastern Wyoming [J]. Environ Sci Technol, 1982, 16 (9): 582-587
73 Yi S, Zhuang W, Tay J. Biodegradation of p-nitrophenol by aerobic granules in a sequencing batch reactor [J]. Environ Sci Technol, 2006, 40 (7): 2396-2401
74 Zhang L, Chen J, Fang F. Biodegradation of methyl t-butyl ether by aerobic granules under a cosubstrate condition [J]. Appl Microbiol Biotechnol, 2008, 78 (3): 543-550
75 Nancharaiah YV, Joshi HM, Mohan T. Aerobic granular biomass: a novel biomaterial for efficient uranium removal [J]. Curr Sci, 2006, 91 (4): 503-509
76 Schwarzenbeck N, Erley R, McSwain BS. Treatment of malting wastewater in a granular sludge sequencing batch reactors [J]. Acta Hydrochim Hydrobiol, 2004, 32 (1): 16-24
77 de Kreuk MK, Kishida N, van Loosdrecht MCM. Behavior of polymeric substrates in an aerobic granular sludge system [J]. Water Res, 2010, 44 (20): 5929-5938
78 韩春威. 水解酸化-好氧工艺处理屠宰废水的试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2007 [Han C. Experimental study on treatment of slaughterhouse wastewater with hydrolytic acidification-aerobic process [D]. Harbin: Harbin Institute of Technology, 2007]
79 赫俊国, 李建政, 张金松. 生物膜-活性污泥共生系统处理屠宰废水的研究[J]. 哈尔滨工业大学学报, 2003, 35 (4): 424-427 [He JG, Li JZ, Zhang JS. Treatment of slaughter sewage with slime-activated sludge co-exist system [J]. J Harbin Inst Technol, 2003, 35 (4): 424-427]
80 Kolenbrander PE, Andersen RN, Holdeman LV. Coaggregation of oral bacteroide species with other bacteria: central role in coaggregation bridges and competitions [J]. Infec Immunol, 1985, 48 (3): 741-746
81 Palmer RJ, Kazmerzak K, Kolenbrander PE. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source [J]. Infec Immunol, 2001, 69 (9): 5794-5804
82 Tay J, Liu Q, Liu Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor [J]. J Appl Microbiol, 2001, 91 (1): 168-175
83 Liu Y, Tay J. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge [J]. Water Res, 2002, 36 (7): 1653-1665
84 Liu Y, Yang S, Tay J. Aerobic granules: a novel zinc biosorbent [J]. Lett Appl Microbiol, 2002, 35 (6): 548-551
85 Tay J, Yang S, Liu Y. Hydraulic selection pressure-induced nitrifying granulation in sequencing batch reactors [J]. Appl Microbiol Biotechnol, 2002, 59 (2-3): 332-337
86 Wang Q, Du G, Chen J. Aerobic granular sludge cultivated under the selective pressure as a driving force [J]. Proc Biochem, 2004, 39 (5): 557-563
87 Wang X, Zhang H, Yang F. Improved stability and performance of aerobic granules under stepwise increased selection pressure [J]. Enz Microbiol Technol, 2007, 41 (3): 205-211
88 Trinet F, Heim R, Amar D. Study of biofilm and fluidization of bioparticles in a three-phase fluidized-bed reactor [J]. Water Sci Technol, 1991, 23 (7-9): 1347-1354
89 Sutherland IW. Polysaccharases for microbial exopolysaccharides [J]. Carbohydr Polym, 1999, 38 (4): 319-328
90 Bossier P, Verstraete W. Triggers for microbial aggregation in activated sludge [J]. Appl Microbiol Biotechnol, 1996, 45 (1-2): 1-6
91 Tay J, Liu Q, Liu Y. The role of cellular polysaccharides in the formation and stability of aerobic granules [J]. Lett Appl Microbiol, 2001, 33 (3): 222-226
92 Di Iaconi C, RamadoriR, Lopez A. Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor [J]. Biochem Eng J, 2006, 30 (2): 152-157
93 Yang S, Tay J, Liu Y. Inhibition of free ammonia to the formation of aerobic granules [J]. Biochem Eng J, 2004, 17 (1): 41-48
94 Cammarota M, SantAnna GL. Metabolic blocking of exopolysaccharides synthesis: effects on microbial adhesion and biofilm accumulation [J]. Biotechnol Lett, 1998, 20 (1): 1-4
95 Chen M, Lee D, Tay J. Distribution of extracellular polymeric substances in aerobic granules [J]. Appl Microbiol Biotechnol, 2007, 73 (6): 1463-1469
96 Wang Z, Liu Y, Tay J. Distribution of EPS and cell surface hydrophobicity in aerobic granules [J]. Appl Microbiol Biotechnol, 2005, 69 (4): 469-473
97 Sunil A, Lee D, Tay J. Extracellular polymeric substances and structural stability of aerobic granule [J]. Water Res, 42 (6-7): 1644-1650
98 Hao X, van Loosdrecht MCM, Heijnen JJ. Model-based evaluation of kinetic, biofilm and process parameters in a one-reactor ammonium removal process [J]. Biotechnol Bioeng, 2002, 77 (3): 266-277
99 Yang S, Liu Q, Tay J. Growth kinetics of aerobic granules developed in sequencing batch reactors [J]. Lett Appl Microbiol, 2004, 38 (2): 106-112
100 Vel M, Keller J, Yuan Z. Effect of free ammonia on the respiration and growth processes of an enriched nitrobacter culture [J]. Water Res, 2007, 41 (4): 826-834
101 Jiang H, Tay J, Maszenan AM. Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains [J]. Environ Sci Technol, 2006, 40 (19): 6137-6142
102 Jiang H, Tay S, Maszenan AM. Physiological traits of bacterial strains isolated from phenol-degrading aerobic granules [J]. FEMS Microbiol Ecol, 2006, 57 (2): 182-191
103 Ni B, Yu H, Sun Y. Modeling simultaneous autotrophic and heterotrophic growth in aerobic granules [J]. Water Res, 2008, 42 (6-7): 1583-1594
104 Ni B, Yu H. Storage and growth of denitrifiers in aerobic granules: part I. model development [J]. Biotechnol Bioeng, 2008, 99 (2): 314-323
105 Ni B, Yu H, Xie W. Storage and growth of denitrifiers in aerobic granules: part II. model calibration and verification [J]. Biotechnol Bioeng, 2008, 99 (2): 324-332
106 Su K, Yu H. Formation and characterization of aerobic granules in a sequencing batch reactor treating soybean-processing wastewater [J]. Environ Sci Technol, 2005, 39 (8): 2818-2827
107 Ni B, Yu H. Mathematical modeling of aerobic granular sludge: a review [J]. Biotechnol Adv, 2010, 28 (6): 895-909
108 de Kreuk MK, Picioreanu C, van Loosdrecht MCM. Kinetic model of a granular sludge SBR: influences on nutrient removal [J]. Biotechnol Bioeng, 2007, 97 (4): 801-815
109 de Kreuk MK, Kishida N, van Loosdrecht MCM. Aerobic granular sludge - state of the art [J]. Water Sci Technol, 2007, 55 (8-9): 75-81
110 Xavier J, de Kreuk MK, van Loosdrecht MCM. Multi-scale individual-based model of microbial and bioconversion dynamics in aerobic granular sludge [J]. Environ Sci Technol, 2007, 41 (18): 6410-6417


Last Update: 2014-08-26