|Table of Contents|

Correlation between polyunsaturated fatty acids and cold adaptation of Rhodotorula glutinis(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2014 02
Page:
233-237
Research Field:
Articles
Publishing date:

Info

Title:
Correlation between polyunsaturated fatty acids and cold adaptation of Rhodotorula glutinis
Author(s):
YANG Zhaojie LI Lingyan HU Binbin LIN Lianbing WEI Yunlin JI Xiuling ZHANG Qi
Biotechnology Research Center, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
Keywords:
Rhodotorula glutinis cold adaptation polyunsaturated fatty acids membrane fluidity Δ12-desaturase gene
CLC:
Q935
PACS:
DOI:
10.3724/SP.J.1145.2014.00233
DocumentCode:

Abstract:
This study aimed to analyze the correlation between the cold adaptation of Rhodotorula glutinis YM25079 and the membrane fluidity, content of polyunsaturated fatty acids and mRNA expression level of Δ12-desaturase gene. We analyzed the optimum growth temperature of Rhodotorula glutinis YM25079, as well as changes in cell membrane fluidity, content of polyunsaturated fatty acids and mRNA expression level of Δ12-desaturase gene in response to temperature shift. The results showed that YM25079 could grow at 5-30 ℃, with the optimum temperature of 15 ℃. The membrane fluidity of YM25079 cells was not significantly reduced when the culture temperature decreased from 25 ℃ to 15 ℃. But the content of polyunsaturated fatty acids including linoleic acid and α-Linolenic acid increased significantly from 29.4% to 55.39%; and the mRNA transcription level of Δ12-desaturase gene was 5-fold higher in YM25079 cells grown at 15 ℃ than in those grown at 25 ℃. The results suggested that the cold adaptation of Rhodotorula glutinis YM25079 might be obtained by enhancing expression of genes in polyunsaturated fatty acids biosynthesis, increasing the content of polyunsaturated fatty acids in the cell membranes, and maintaining the membrane fluidity at low temperature.

References

1 Morita RY. Psychrophilicbacteria [J]. Bacteriol Rev, 1975, 39 (2): 144-167
2 周巧, 张琦, 魏云林, 林连兵, 季秀玲. 低温微生物低温适应性机制及其应用前景[J]. 上海环境科学. 2012, 31 (2): 76-79 [Zhou Q, Zhang Q, Wei YL Lin LB, Ji XL. Cold adaptation mechanisms and application prospects of low temperature microorganisms [J]. Shanghai Environ Sci, 2012, 31 (2): 76-79]
3 Chintalapati S, Kiran MD, Shivaji S. Role of membrane lipid fatty acids in cold adaptation [J]. Cell Mol Biol, 2004, 50 (5): 631-642
4 Weinstein RN, Montiel PO, Johnstone K. Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fell field soil in the maritime Antarctic [J]. Mycologia, 2000, 92 (2): 222 -229
5 陆合, 张学昆, 李加纳, 雷天刚. 逆境对真菌膜脂肪酸成分的影响[J]. 微生物学杂志. 2005, 25 (2): 1-3 [Lu H, Zhang XK, Li JN, Lei TG. Effects of adversity on fatty acid composition in fungal membrane [J]. J Microbiol, 2005, 25 (2): 1-3]
6 康亦兼, 咸漠, 王君霞, 程铁欣, 李文兴, 毕颖丽. 菌丝体的膜流动性对去饱和酶活性的影响[J]. 分子催化, 2002, 16 (1): 1-4 [Kang YJ, Xian M, Wang JX, Cheng TX, Li WX, Bi WL. Effects of mycelial biomembrane fluidity on the activity of desaturases [J]. J Mol Catal, 2002, 16 (1): 1-4]
7 刘莉, 李明春, 胡国武, 张丽, 邢来君. 高山被孢霉ATCC16266Δ6-脂肪酸脱氢酶基因在酿酒酵母中的表达[J]. 生物工程学报, 2001, 17 (2): 161-164 [Liu L, Li MC, Hu GW, Zhang L, Xing LJ. Expression of Δ6-fatty acid desaturase gene from Mortierella alpina in Saccharomyces cerevisiae [J]. Chin J Biotechnol, 2001, 17 (2): 161-164]
8 范玉贞, 孙焕顷. 低温微生物适应低温的分子机制[J]. 衡水学院学报, 2008, 10 (1): 70-72 [Fang YZ, Sun HQ. The cold-adapted molecular mechanism of cold-adapted microorganism [J]. J Hengshui Univ, 2008, 10 (1): 70-72]
9 Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NP. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments [J]. Microbiol Mol Biol Rev, 2006,70 (1): 222-252
10 张琦, 王志, 何仕武, 季秀玲, 林连兵, 魏云林. 多不饱和脂肪酸对微生物低温适应性的影响[J]. 生命科学, 2012, 24 (1): 58-63 [Zhang Q, Wang Z, He SW, Ji XL, Lin LB, Wei YL. Effects of polyunsaturated fatty acids on the cold adaptation of microoganisms [J]. Chin Bull Life Sci, 2012, 24 (1): 58-63]
11 Kargiotidou A, Deli D, Galanopoulou D, Tsaftaris A, Farmaki T. Low temperature and light regulate delta 12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum) [J]. J Exp Bot, 2008, 59 (8): 2043-2056
12 Li L, Wang X, Gai J, Yu D. Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean [J]. J Plant Physiol, 2007, 164 (11): 1516-1526
13 Lei N, Peng S, Niu B, Chen J, Zhou J, Tang L, Xu Y, Wang S, Chen F. Molecular cloning and characterization of a novel microsomal oleate desaturase gene DiFAD2 from Davidia involucrata Baill [J]. Biol Plant, 2010, 54 (1): 41-46
14 Tang GQ, Novitzky WP, Griffin HC, Huber SC, Dewey RE. Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation [J]. Plant J, 2005, 44 (3): 433-446
15 Browse J, Xin Z. Temperature sensing and cold acclimation [J]. Curr Opin Plant Biol, 2001 (4): 241-246
16 Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D. Molecular basis of thermosensing: a two-competent signal transduction thermometer in Bacillus subtilis [J]. EMBO J, 2001, 20 (7): 1681-1691
17 Herrero A, Flores E. The cyanobacteria: molecular biology, genetics and evolution [M]. Wymondham: Horizon ScientiWc Press, 2008. 117-157

Memo

Memo:
-
Last Update: 2014-05-04