|Table of Contents|

Biomass allocation strategies of Lilium regale and their altitudinal effects(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2014 02
Research Field:
Publishing date:


Biomass allocation strategies of Lilium regale and their altitudinal effects
DING Jianlin HAN Yue BAO Weikai XIANG Shuang
1ECORES Lab, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2Forestry Bureau of Wenchuan County, Wenchuan 623000, China
allometry isometric relationship Lilium regale reproductive allocation vegetative allocation
Q949.71+8.230.8 (271)

Biomass allocation is a crucial topic of plant life history strategy research. Natural environments always affect the relationship of plant module biomass partitioning, especially that of reproductive and vegetative biomass allocation. Lilium regale is one kind of valuable wild resource plant in the Minjiang River. The objective of this study was to test if there were allometric relationships between the component biomass allocation changes along altitudes and the biomass allocation among components of L. regale, abd if reproductive biomass allocation increased with the altitude in the way that vegetative biomass allocation did. The biomass of each module and total plant was sampled from three altitudes with three to four habitats at each altitude. One-way ANOVA and LSD comparison were employed to test the differences of biomass values and percentages of individual components of L. regale from three altitudes. The standardized major axis estimation (SMA) was used to test the allometry of bivariate scaling relationship between module traits. We found that the individual total biomass was higher in the middle than the lower altitude, but modules biomass partitioning had different patterns at each altitude. Vegetative partitioning percentages decreased with increase of altitude, but their counterpart reproductive partitioning percentages increased with increase of altitude. The isometric relationship was found between each pair of module biomass allocation except that of leaf mass versus other components biomass. The isometric relationship was also shown between vegetative and reproductive biomass allocation of total, above-ground and below-ground modules. Reproductive allocation was higher in higher altitudes than in lower altitudes at given vegetative biomass. The allometric scaling relationship between leaf mass and total biomass might be due to the “diminishing returns effect” of leaf area. This study suggested that similar to the previous interspecific results, the common isometric scaling relationship of biomass allocation also exists intraspecificly along an altitudinal gradient. As a life history strategy for plants at stressful environments, the reproductive biomass partitioning was higher than the vegetative biomass partition.


1 Bazzaz FA, Grace J. Plant Resource Allocation [M]. London: Academic Press, 1997
2 Silvertown JW, Doust JL. Introduction to Plant Population Biology [M]. Oxford, London: Blackwell, 1993
3 Harper J. Population Biology of Plants [M]. New York: Academic Press, 1977
4 Enquist BJ, Niklas KJ. Global allocation rules for patterns of biomass partitioning in seed plants [J]. Science, 2002, 295 (5559): 1517-1520
5 McConnaughay K, Coleman J. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients [J]. Ecology, 1999, 80 (8): 2581-2593
6 Lin DL, Xia JY, Wan SQ. Climate warming and biomass accumulation of terrestrial plants: a meta-analysis [J]. New Phytol, 2010, 188 (1): 187-198
7 Niu KC, Choler P, Zhao BB, Du GZ. The allometry of reproductive biomass in response to land use in Tibetan alpine grasslands [J]. Funct Ecol, 2009, 23 (2): 274-283
8 K?rner C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems [M]. 2nd ed. Springer Verlag, 2003
9 Xiang S, Wu N, Sun SC. Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis [J]. Trees-Struct Funct, 2009, 23 (3): 637-647
10 Fabbro T, K?rner C. Altitudinal differences in flower traits and reproductive allocation [J]. Flora-Morphol Distrib Funct Ecol Plants, 2004, 199 (1): 70-81
11 Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. Towards a worldwide wood economics spectrum [J]. Ecol Lett, 2009, 12 (4): 351-366
12 Niinemets ?, Kull O. Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees [J]. Tree Physiol, 1999, 19: 349-358
13 Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ. Plant ecological strategies: some leading dimensions of variation between species [J]. Annu Rev Ecol Syst, 2002, 33: 125-159
14 唐进, 汪发缵. 中国植物志(第14卷) [M]. 北京: 科学出版社, 1980. 124-125 [Tang J, Wang FZ. Flora of China (Volume 14) [M]. Beijing: Science Press, 1980. 124-125
15 吴祝华, 姜福星, 施季森, 席梦利, 许维宏, 胡凤荣, 刘光欣. 岷江百合生境及遗传多样性[J]. 东北林业大学学报, 2007, 35 (7): 40-43 [Wu ZH, Jiang FX, Shi JS, Xi ML, Xu WH, Hu FR, Liu GX. Habitat and genetic diversity of Lilium regale [J]. J Northeast For Univ, 2007, 35 (7): 40-43]
16 张彩霞, 明军,刘春, 赵海涛, 王春城, 单红臣, 任君芳, 周旭, 穆鼎. 岷江百合天然群体的表型多样性[J]. 园艺学报, 2008, 35: 1183-1188 [Zhang CX, Ming J, Liu C, Zhao HT, Wang CC, Shan HC, Ren JF, Zhou X, Mu D. Phenotypic variation of natural populations in Lilium regale Wilson [J]. Acta Horticult Sin, 2008, 35: 1183-1188]
17 张一平, 张昭辉, 何云玲. 岷江上游气候立体分布特征[J]. 山地学报, 2004, 22 (2): 179-183 [Zhang YP, Zhang ZH, He YL. Distribution of climatic elements in the upper reaches of Minjiang River [J]. J Mount Sci, 2004, 22 (2): 179-183]
18 王春明, 包维楷, 陈建中, 孙辉, 谢嘉穗. 岷江上游干旱河谷区褐土不同亚类剖面及养分特征[J]. 应用与环境生物学报, 2003, 9 (3): 230-234 [Wang CM, Bao WK, Chen JZ, Sun H, Xie JS. Profile characteristics and nutrients of dry cinnamon soils in dry valley of the upper Minjiang River [J]. Chin J Appl Environ Biol, 2003, 9 (3): 230-234]
19 Warton DI, Wright IJ, Falster DS, Westoby M. Bivariate line-fitting methods for allometry [J]. Biol Rev, 2006, 81 (2): 259-291
20 Falster DS, Warton DI, Wright IJ. User’s Guide to SMATR: Standardised Major Axis Tests and Routines. Version 2.0, Copyright 2006. http://www.bio.mq.edu.au/ecology/SMATR/ 13 November 2006. 2006
21 Pitman E. A note on normal correlation [J]. Biometrika, 1939, 31: 9-12
22 Warton DI, Weber NC. Common slope tests for bivariate errors-in-variables models [J]. Biometr J, 2002, 44 (2): 161-174
23 范邓妹, 杨永平. 不同生境下珠芽蓼(蓼科)的繁殖策略比较[J]. 云南植物研究, 2009, 31 (2): 153-157 [Fan DM, Yang YP. Reproductive performance in two populations of Polygonum viviparum (Polygonaceae) under different habitats [J]. Acta Bot Yunnanica, 2009, 31 (2): 153-157]
24 Niklas KJ, Enquist BJ. On the vegetative biomass partitioning of seed plant leaves, stems, and roots [J]. Am Nat, 2002, 159 (5): 482-497
25 Niklas KJ, Cobb E. Biomass partitioning and leaf N,P-stoichiometry: comparisons between tree and herbaceous current-year shoots [J]. Plant Cell Environ, 2006, 2006 (29): 2030-2042
26 Corner EJH. The durian theory or the origin of the modern tree [J]. Ann Bot, 1949, 13: 367-414
27 Pickup M, Westoby M, Basden A. Dry mass costs of deploying leaf area in relation to leaf size [J]. Funct Ecol, 2005, 2005 (19): 88-97
28 Wright IJ, Falster DS, Pickup M, Westoby M. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics [J]. Physiol Plant, 2006, 127 (3): 445-456
29 Bloom AJ, Chapin FS, Mooney HA. Resource limitation in plants-an economic analogy [J]. Annu Rev Ecol Syst, 1985, 16: 363-392
30 Niklas KJ, Cobb ED, Niinemets U, Reich PB, Sellin A, Shipley B, Wright IJ. “Diminishing returns” in the scaling of functional leaf traits across and within species groups [J]. Proc Natl Acad Sci USA, 2007, 104 (21): 8891-8896
31 何其华, 何永华, 包维楷. 岷江上游干旱河谷典型阳坡海拔梯度上土壤水分动态[J]. 应用与环境生物学报, 2004, 10 (1): 68-74 [He QH, He YH, Bao WK. Dynamics of soil water contents on south-facing slope of dry valley area in the upper reaches of the Minjiang River [J]. Chin J Appl Environ Biol, 2004, 10 (1): 68-74]
32 张林静, 石云霞, 潘晓玲. 草本植物繁殖分配与海拔高度的相关分析[J]. 西北大学学报(自然科学版), 2007, 37 (1): 77-80 [Zhang LJ, Shi YX, Pan XL. Analysis of correlativity between reproductive allocation and altitude in plants [J]. J Northwest Univ (Nat Sci Ed), 2007, 37 (1): 77-80]
33 Hautier Y, Randin CF, St?cklin J, Guisan A. Changes in reproductive investment with altitude in an alpine plant [J]. J Plant Ecol 2009, 2 (3): 125-134
34 樊宝丽, 孟金柳, 赵志刚, 杜国祯. 海拔对青藏高原东部毛茛科植物繁殖特征和资源分配的影响[J]. 西北植物学报, 2008, 28 (4): 805-811 [Fan BL, Meng JL, Zhao ZG, Du GZ. Influence of altitude on reproductive traits and resource allocation of species of Ranunculaceae at East Qinghai Tibetan Plateu [J]. Acta Bot Bor-Occid Sin, 2008, 28 (4): 805-811]
35 王赟, 胡莉娟, 段元文, 杨永平. 岩白菜(虎耳草科)不同海拔居群的繁殖分配[J]. 云南植物研究, 2010, 32 (3): 270-280 [Wang Y, Hu LJ, Duan YW, Yang YP. Altitudinal variations in reproductive allocation of Bergenia purpurascens (Saxifragaceae) [J]. Acta Bot Yunnanica, 2010, 32 (3): 270-280]
36 廖万金, 张全国, 张大勇. 不同海拔藜芦种群繁殖特征的初步研究[J]. 植物生态学报, 2003, 27 (2): 240-248 [Liao WJ, Guo ZQ, Zhang DY. A preliminary study on the reproductive features of Veratrum nigrum along an altitudinal gradient [J]. Acta Phytoecol Sin, 2003, 27 (2): 240-248]
37 王一峰, 刘启茜, 裴泽宇, 李海燕. 青藏高原3种风毛菊属植物的繁殖分配与海拔高度的相关性[J]. 植物生态学报, 2012, 36 (1): 39-46 [Wang YF, LIU QQ, Pei ZY, LI HY. Correlation between altitude and reproductive allocation in three Saussurea species on China’s Qinghai-Tibetan Plateau [J]. Chin J Plant Ecol, 2012, 36 (1): 39-46]
38 徐波, 王金牛, 石福孙, 高景, 吴宁. 青藏高原东缘野生暗紫贝母生物量分配格局对高山生态环境的适应[J]. 植物生态学报, 2013, 37 (3): 187-196 [Xu B, Wang JN, Shi FS, Gao J, Wu N. Adaptation of biomass allocation patterns of wild Fritillaria unibracteata to alpine environment in the eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2013, 37 (3): 187-196]
39 杨利平, 周晓峰. 细叶百合的生物量和营养分配[J]. 植物生态学报, 2004, 28 (1): 138. [Yang LP, Zhou XF. Biomass and nutrient allocation of Lilium pumilum [J]. Acta Phytoecol Sin, 2004, 28 (1): 138]
40 夏宜平, 黄春辉, 郑慧俊, 高晓辰. 百合鳞茎形成与发育生理研究进展[J]. 园艺学报, 2005, 32 (5): 947-953 [Xia YP, Huang CH, Zheng HJ, Gao XC. Advances in researches on bulb development of Lilium spp. and its physiological mechanisms [J]. Acta Horticult Sin, 2005, 32 (5): 947-953]
41 Pianka ER. On r- and K-selection [J]. Am Nat, 1970, 104(940): 592-597
42 Niklas KJ, Enquist BJ. An allometric model for seed plant reproduction [J]. Evol Ecol Res, 2003, 5 (1): 79-88
43 Zhang DY. Evolutionarily stable reproductive strategies in sexual organisms: IV. Parent-offspring conflict and selection of seed size in perennial plants [J]. J Theor Biol, 1998, 192 (2): 143-153


Last Update: 2014-05-04