1 Rabaey K. Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application [M]. London: International Water Assn, 2010. 1
2 Aelterman P, Verstraete W. Bioanode performance in bioelectrochemical systems: recent improvements and prospects [J]. Trends Biotechnol, 2009, 27 (3): 168-178
3 Hamelers HV, Ter Heijne A, Sleutels TH, Jeremiasse AW, Strik DP, Buisman CJ. New applications and performance of bioelectrochemical systems [J]. Appl Microbiol Biol, 2010, 85 (6): 1673-1685
4 Huang L, Chai X, Chen G, Logan B E. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environ Sci Technol, 2011, 45 (11): 5025-5031
5 Lovley DR, Nevin KP. A shift in the current: new applications and concepts for microbe-electrode electron exchange [J]. Curr Opin Biotech, 2011, 22 (3): 441-448
6 Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. Electrosynthesis of commodity chemicals by an autotrophic microbial community [J]. Appl Environ Microb, 2012, 78 (23): 8412-8420
7 Tandukar M, Huber S J, Onodera T, Pavlostathis S G. Biological chromium (VI) reduction in the cathode of a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (21): 8159-8165
8 Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ Sci Technol, 2007, 41 (9): 3354-3360
9 Puig S, Serra M, Vilar-Sanz A, Cabré M, Ba?eras L, Colprim J, Balaguer M D. Autotrophic nitrite removal in the cathode of microbial fuel cells [J]. Bioresour Technol, 2011, 102 (6): 4462-4467
10 Zhan GQ, Zhang LX, Li DP, Su WT, Tao Y, Qian JW. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell [J]. Bioresour Technol, 2012, 116: 271-277
11 Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, L?ffler FE, Lovley DR. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi [J]. Appl Environ Microb, 2008, 74 (19): 5943-5947
12 Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958
13 Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate [J]. Int J Hydrogen Energ, 2013, 38 (8): 3497-3502
14 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds [J]. MBio, 2010, 1 (2): e00103-00110
15 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresour Technol, 2010, 101 (9): 3085-3090
16 苏敏, 蒋永, 张尧, 高平, 李大平. 生物电化学耦合H2还原CO2合成简单有机物[J]. 应用与环境生物学报, 2013, 19 (5): 827-832 [Su M, Jiang Y, Zhang Y, Gao P, Li DP. Coupled bioelectrochemical system for reducing CO2 to simple organic compounds in the presence of H2 [J]. Chin J Appl Environ Biol, 2013, 19 (5): 827-832]
17 蒋永, 苏敏, 张尧, 陶勇, 李大平. 生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J]. 应用与环境生物学报, 2013, 19 (5): 833-837 [Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li DP. Simultaneous production of methane and acetate from carbon dioxide with bioelectrochemical systems [J]. Chin J Appl Environ Biol, 2013, 19 (5): 833-837]
18 Rabaey K, Rozendal RA. Microbial electrosynthesis—revisiting the electrical route for microbial production [J]. Nat Rev Microbiol, 2010, 8 (10): 706-716
19 Fast AG, Papoutsakis ET. Stoichiometric and energetic analyses of non-photosynthetic CO2 fixation pathways to support synthetic biology strategies for production of fuels and chemicals [J]. Curr Opin Chem Eng, 2012, 1 (4): 380-395
20 Lovley DR. Powering microbes with electricity: direct electron transfer from electrodes to microbes [J]. Environ Microbiol Rep, 2011, 3 (1): 27-35
21 Rabaey K, Girguis P, Nielsen LK. Metabolic and practical considerations on microbial electrosynthesis [J]. Curr Opin Biotech, 2011, 22 (3): 371-377
22 Su WT, Zhang LX, Li DP, Zhan GQ, Qian JW, Tao Y. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor [J]. Biotechnol Bioeng, 2012, 109 (11): 2904-2910
23 Peng L, You S-J, Wang J-Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis [J]. Biosens Bioelectron, 2010, 25 (5): 1248-1251
24 Aulenta F, Reale P, Catervi A, Panero S, Majone M. Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system [J]. Electrochim Acta, 2008, 53 (16): 5300-5305
25 Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration [J]. Environ Microbiol, 2004, 6 (6): 596-604
26 Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environ Sci Technol, 2005, 39 (22): 8943-8947
27 Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms [J]. Appl Environ Microb, 2011, 77 (9): 2882-2886
28 Schiel-Bengelsdorf B, Dürre P. Pathway engineering and synthetic biology using acetogens [J]. Febs Lett, 2012, 586 (15): 2191-2198
29 Steinbusch KJ, Hamelers HV, Plugge CM, Buisman CJ. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass [J]. Energ Environ Sci, 2011, 4 (1): 216-224
28 Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, Franks AE, Nevin KP, Russell TP, Lovley DR. Improved cathode materials for microbial electrosynthesis [J]. Energy Environ Sci, 2012, 6 (1): 217-224