|Table of Contents|

Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2014 02
Page:
174-178
Research Field:
Articles
Publishing date:

Info

Title:
Simultaneous microbial electrosynthesis of acetate and butyrate from carbon dioxide in bioelectrochemical systems
Author(s):
ZHANG Yao ZHANG Wenjie JIANG Yong SU Min TAO Yong LI Daping
1Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China 2School of Life Sciences, Sichuan University, Chengdu 610065, China 3University of Chinese Academy of Sciences, Beijing 100049, China
Keywords:
bioelectrochemical systems microbial electrosynthesis carbon dioxide acetate butyrate
CLC:
TM911.45 : Q936
PACS:
DOI:
10.3724/SP.J.1145.2014.00174
DocumentCode:

Abstract:
Bioelectrochemical systems (BESs) can be used for microbial electrosynthesis, producing organic chemicals from carbon dioxide by recovering energy from the wastewater in situ. By constructing a bioelectrochemical system, this study focused primarily on reduction of carbon dioxide to acetate and butyrate by mixed cultures as electrocatalytic agents. At a set cathode potential of -0.75 V(vs Ag/AgCl) in the build-up bioelectrochemical system, the maximum concentration of acetate was 251.89 mg/L in 10 days of a reaction cycle. Butyrate appeared on the third day of the reaction, and the maximum concentration of butyrate was 89.42 mg/L. The total electron recovery of BESs reached 85.04%. The electrochemical analysis of the biocathode showed its excellent catalytic activity. PCR-DGGE of biocathode suggested the main microbial populations were Acetobacterium and Bacteriodes. This research proved that biocathode has the ability to produce acetate with carbon dioxide as the original substrate, and to further elongate medium chain fatty acids.

References

1 Rabaey K. Bioelectrochemical Systems: From Extracellular Electron Transfer to Biotechnological Application [M]. London: International Water Assn, 2010. 1
2 Aelterman P, Verstraete W. Bioanode performance in bioelectrochemical systems: recent improvements and prospects [J]. Trends Biotechnol, 2009, 27 (3): 168-178
3 Hamelers HV, Ter Heijne A, Sleutels TH, Jeremiasse AW, Strik DP, Buisman CJ. New applications and performance of bioelectrochemical systems [J]. Appl Microbiol Biol, 2010, 85 (6): 1673-1685
4 Huang L, Chai X, Chen G, Logan B E. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells [J]. Environ Sci Technol, 2011, 45 (11): 5025-5031
5 Lovley DR, Nevin KP. A shift in the current: new applications and concepts for microbe-electrode electron exchange [J]. Curr Opin Biotech, 2011, 22 (3): 441-448
6 Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. Electrosynthesis of commodity chemicals by an autotrophic microbial community [J]. Appl Environ Microb, 2012, 78 (23): 8412-8420
7 Tandukar M, Huber S J, Onodera T, Pavlostathis S G. Biological chromium (VI) reduction in the cathode of a microbial fuel cell [J]. Environ Sci Technol, 2009, 43 (21): 8159-8165
8 Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W. Biological denitrification in microbial fuel cells [J]. Environ Sci Technol, 2007, 41 (9): 3354-3360
9 Puig S, Serra M, Vilar-Sanz A, Cabré M, Ba?eras L, Colprim J, Balaguer M D. Autotrophic nitrite removal in the cathode of microbial fuel cells [J]. Bioresour Technol, 2011, 102 (6): 4462-4467
10 Zhan GQ, Zhang LX, Li DP, Su WT, Tao Y, Qian JW. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell [J]. Bioresour Technol, 2012, 116: 271-277
11 Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, L?ffler FE, Lovley DR. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi [J]. Appl Environ Microb, 2008, 74 (19): 5943-5947
12 Cheng SA, Xing DF, Call DF, Logan BE. Direct biological conversion of electrical current into methane by electromethanogenesis [J]. Environ Sci Technol, 2009, 43 (10): 3953-3958
13 Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate [J]. Int J Hydrogen Energ, 2013, 38 (8): 3497-3502
14 Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds [J]. MBio, 2010, 1 (2): e00103-00110
15 Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture [J]. Bioresour Technol, 2010, 101 (9): 3085-3090
16 苏敏, 蒋永, 张尧, 高平, 李大平. 生物电化学耦合H2还原CO2合成简单有机物[J]. 应用与环境生物学报, 2013, 19 (5): 827-832 [Su M, Jiang Y, Zhang Y, Gao P, Li DP. Coupled bioelectrochemical system for reducing CO2 to simple organic compounds in the presence of H2 [J]. Chin J Appl Environ Biol, 2013, 19 (5): 827-832]
17 蒋永, 苏敏, 张尧, 陶勇, 李大平. 生物电化学系统还原二氧化碳同时合成甲烷和乙酸[J]. 应用与环境生物学报, 2013, 19 (5): 833-837 [Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li DP. Simultaneous production of methane and acetate from carbon dioxide with bioelectrochemical systems [J]. Chin J Appl Environ Biol, 2013, 19 (5): 833-837]
18 Rabaey K, Rozendal RA. Microbial electrosynthesis—revisiting the electrical route for microbial production [J]. Nat Rev Microbiol, 2010, 8 (10): 706-716
19 Fast AG, Papoutsakis ET. Stoichiometric and energetic analyses of non-photosynthetic CO2 fixation pathways to support synthetic biology strategies for production of fuels and chemicals [J]. Curr Opin Chem Eng, 2012, 1 (4): 380-395
20 Lovley DR. Powering microbes with electricity: direct electron transfer from electrodes to microbes [J]. Environ Microbiol Rep, 2011, 3 (1): 27-35
21 Rabaey K, Girguis P, Nielsen LK. Metabolic and practical considerations on microbial electrosynthesis [J]. Curr Opin Biotech, 2011, 22 (3): 371-377
22 Su WT, Zhang LX, Li DP, Zhan GQ, Qian JW, Tao Y. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor [J]. Biotechnol Bioeng, 2012, 109 (11): 2904-2910
23 Peng L, You S-J, Wang J-Y. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis [J]. Biosens Bioelectron, 2010, 25 (5): 1248-1251
24 Aulenta F, Reale P, Catervi A, Panero S, Majone M. Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system [J]. Electrochim Acta, 2008, 53 (16): 5300-5305
25 Gregory KB, Bond DR, Lovley DR. Graphite electrodes as electron donors for anaerobic respiration [J]. Environ Microbiol, 2004, 6 (6): 596-604
26 Gregory KB, Lovley DR. Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J]. Environ Sci Technol, 2005, 39 (22): 8943-8947
27 Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, Snoeyenbos-West OL, Lovley DR. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms [J]. Appl Environ Microb, 2011, 77 (9): 2882-2886
28 Schiel-Bengelsdorf B, Dürre P. Pathway engineering and synthetic biology using acetogens [J]. Febs Lett, 2012, 586 (15): 2191-2198
29 Steinbusch KJ, Hamelers HV, Plugge CM, Buisman CJ. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass [J]. Energ Environ Sci, 2011, 4 (1): 216-224
28 Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, Franks AE, Nevin KP, Russell TP, Lovley DR. Improved cathode materials for microbial electrosynthesis [J]. Energy Environ Sci, 2012, 6 (1): 217-224

Memo

Memo:
-
Last Update: 2014-05-04