|Table of Contents|

Effect of Intestinal Microbes on the Immune System and the Latest Research Methods(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

Issue:
2013 03
Page:
542-546
Research Field:
Reviews
Publishing date:

Info

Title:
Effect of Intestinal Microbes on the Immune System and the Latest Research Methods
Author(s):
CHEN DandanGU ShenghuaZHANG JinnaBAO FukaiTANG YueqingWU Xiaolei
(1Department of Microbiology and Immunology, Kunming Medical College, Kunming 650031, China)
(2College of Engineering, Peking University, Beijing 100871, China)
Keywords:
gut microbiota immune system autoimmunity 16S rDNA metagenomics
CLC:
Q939.91+Q93-33
PACS:
DOI:
10.3724/SP.J.1145.2013.00542
DocumentCode:

Abstract:
The complex intestinal microbial ecology is closely related with the immune system of organisms. Gut flora not only regulates the secretion of IgA to influence intestinal mucosal immunity by preventing invasion of pathogenic microorganisms, but also affects extra-intestinal immune system and plays an important role in the development of autoimmune diseases. The gut flora is usually studied with molecular biological techniques based on 16S rRNA, such as pyrosequencing, gene chip and metagenomic sequencing methods, each with its own advantages. Future experimental data of gut flora acquired with cross-disciplinary approaches of ecology, microbiology and advanced computational methods are expected to provide prevention and treatment for immune diseases.

References

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project [J]. Nature, 2007, 449 (7164): 804-810
Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE. Metagenomic analysis of the human distal gut microbiome [J]. Science, 2006, 312 (5778): 1355-1359
Suzuki K, Fagarasan S. Host-bacterial mutulisam in the human intestine [J]. Cell, 2008, 29 (11): 523-531
罗治彬, 吴嘉惠. 肠道粘膜 SIgA 免疫系统的研究进展[J]. 细胞与分子免疫学杂志, 1997, 13 (Suppl 2): 38-41
Vinderola G, Matar C, Perdigo´n G. Milk fermented by Lactobacillus helveticus R389 and its non-bacterial fraction confer enhanced protection against Salmonella enteritidis serovar Typhimurium infection in mice [J]. Immunobiology, 2007, 212 (2): 107-118
Nishio J, Honda K. Immunoregulation by the gut microbiota [J]. Cell Mol Life Sci, 2012, 69: 3635-3650
Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity [J]. Gut Microbes, 2012, 3 (1): 4-14
Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function [J]. Nat Rev Immunol, 2010, 10 (2): 131-144
Gibson DL, Ma C, Rosenberger CM, Bergstrom KS, Valdez Y, Huang JT, Khan MA, Vallance BA. Toll-like receptor 2 plays a critical role in maintaining mucosal integrity during Citrobacter rodentium-induced colitis [J]. Cell Microbiol, 2008, 10 (2): 388-403
Hooper LV, Wong MH, Thelin A, Hansson L, Falk PG, Gordon JI. Molecular analysis of commensal host-microbial relationships in the intestine [J]. Science, 2001, 291 (5505): 881-884
Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis [J]. Nature, 2008, 456 (7221): 507-510
Chung H, Kasper DL. Microbiota-stimulated immune mechanisms to maintain gut homeostasis [J]. Curr Opin Immunol, 2010, 22 (4): 455-460.
Macpherson AJ, Uhr T. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria [J]. Science, 2004, 303 (5664): 1662-1665
Umesaki Y, Setoyama H. Structure of the intestinal flora responsible for development of the gut immune system in a rodent model. Microbes Infect, 2000, 2 (11): 1343-1351
Wei B, Su TT, Dalwadi H, Stephan RP, Fujiwara D, Huang TT, Brewer S, Chen L, Arditi M, Borneman J, Rawlings DJ, Braun J. Resident enteric microbiota and CD8+ T cells shape the abundance of marginal zone B cells [J]. Eur J Immunol, 2008, 38 (12): 3411-3425
Peterson DA, McNulty NP, Guruge JL, Gordon JI. IgA response to symbiotic bacteria as a mediator of gut homeostasis [J]. Cell Host Microbe, 2007, 2 (5): 328-339
Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T-cell independent mechanism of intestinal mucosal IgA responses to commensal bacteria [J]. Science, 2000, 288 (5474): 2222-2226
Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 [J]. Nature, 2009, 461 (7268): 1282-1286
Chervonsky AV. Influence of microbial environment on autoimmunity [J]. Nat Immunol, 2010, 11 (1): 28-35
Le PE, Loison C, Struyf S, Springael JY, Lannoy V, Decobecq ME, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation [J]. Biol Chem, 2003, 278 (28): 25481-25489
Quivy V, Van Lint C. Regulation at multiple levels of NF-κB-mediated transactivation by protein acetylation [J]. Biochem Pharmacol, 2004, 68 (6): 1221-1229
Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota [J]. Proc Natl Acad Sci USA, 2010, 107 (27): 12204-12209
Clarke TB, Davis KM, Lysenko ES, Zhou AY, Yu Y, Weiser JN. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity [J]. Nat Med, 2010, 16 (2): 228-231
Mørland B, Midtvedt T. Phagocytosis, peritoneal influx, and enzyme activities in peritoneal macrophages from germfree, conventional, and ex-germfree mice [J]. Infect Immun, 1984, 44 (3): 750-752
Maslowski KM Mackay CR. Diet, gut microbiota and immune responses [J]. Nat Immunol, 2011, 12 (1): 5-9
Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases [J]. N Engl J Med, 2002, 347 (12): 911-920
Muyzer G, Dewaal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electro-phoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl Environ Microbiol, 1993, 59 (3): 695-700
Zhang M, Liu B, Zhang Y, Wei H, Lei Y, Zhao L. Structural shifts of mucosa-associated lactobacilli and Clostridium leptum subgroup in patients with ulcerative colitis [J]. J Clin Microbiol, 2007, 45 (2): 496-500
Hayashi H, Takahashi R, Nishi T, Sakamoto M, Benno Y. Molecular analysis of jejunal, ileal, caecal and rectosigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism [J]. J Med Microbiol, 2005, 54 (Pt 11): 1093-1101
Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins [J]. Nature, 2009, 457 (7228): 480-484
Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC. Low diversity of the gut microbiota in infants with atopic eczema [J]. J Allergy Clin Immunol, 2012, 129 (2): 434-440
Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, Wang Y, Zhu B, Li L. Characterization of fecal microbial communities in patients with liver cirrhosis [J]. Hepatology, 2011, 54 (2): 562-572
Blaut M, Clavel T. Metabolic diversity of the intestinal microbiota: implications for health and disease [J]. J Nutr, 2007, 137 (3): 751S-755S
Carey CM, Kirk JL, Ojha S, Kostrzynska M. Current and future uses of real-time polymerase chain reaction and microarrays in the study of intestinal microbiota and probiotic use and effectiveness [J]. Can Microbiol, 2007, 53 (5): 537-550
Paliy O, Kenche H, Abernathy F, Michail S. Highthroughput quantitative analysis of the human intestinal microbiota with a phylogenetic microarray [J]. Appl Environ Microb, 2009, 75 (11): 3572-3579
Rigsbee L, Agans R, Foy BD, Paliy O. Optimizing the analysis of human intestinal microbiota with phylogenetic microarray [J]. FEMS Microbiol Ecol, 2011, 75 (2): 332-342
Brodie EL, Desantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL, Hazen TC, Richardson PM, Herman DJ, Tokunaga TK, Wan JM, Firestone MK. Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction andreoxidation [J]. Appl Environ Microb, 2006, 72 (9): 628-6298
Palmer C, Bik EM, Eisen MB, Eckburg PB, Sana TR, Wolber PK, Relman DA, Brown P. Rapid quantitative profiling of complex microbial populations [J]. Nucleic Acids Res, 2006, 34 (1): 1-10
Rajilic-Stojanovic M, Heilig HG, Molenaar D, Kajander K, Surakka A, Smidt H, de Vos WM. Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults [J]. Environ Microbiol, 2004, 11 (7): 1736-1751
Wang RF, Beggs ML, Erickson BD, Cerniglia CE . DNA microarray analysis of predominant human intestinal bacteria in fecal samples [J]. Mol Cell Probe, 2004, 18 (4): 223-234
Kang S, Denman SE, Morrison M, Yu Z, Dore J, Leclerc M, McSweeney CS. Dysbiosis of fecal microbiota in Crohn’s disease patients as revealed by a custom phylogenetic microarray [J]. Inflamm Bowel Dis, 2010, 16 (12): 2034-2042
Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products [J]. Chem Biol, 1998, 5 (10): R245- R249
Steward GF, Rappé MS. What’s the ‘meta’ with metagenomics [J]? ISME J, 2007, 1 (2): 100-102
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J; MetaHIT Consortium, Bork P, Ehrlich SD, Wang J. A human gut microbial gene catalogue established by metagenomic sequencing [J]. Nature, 2010, 464 (7285): 59-65
Ott SJ, Musfeldt M, Wenderoth DF, Hampe J, Brant O, Fölsch UR, Timmis KN, Schreiber S. Reduction in diversity of the colonic mucosa associated bacterial microflora in patients with active inflammatory bowel disease [J]. Gut, 2004, 53 (5): 685-693
Reiff C, Kelly D. Inflammatory bowel disease, gut bacteria and probiotic therapy [J]. Int J Med Microbiol, 2010, 300 (1): 25-33
Roesch LF, Lorca GL, Casella G, Giongo A, Naranjo A, Pionzio AM, Li N, Mai V, Wasserfall CH, Schatz D, Atkinson MA, Neu J, Triplett EW. Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model [J]. ISME J, 2009, 3 (5): 536-548
Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach [J]. Gut, 2006, 55 (2): 205-211
Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil [J]. Appl Environ Microbiol, 2007, 73 (21): 7059-7066

Memo

Memo:
-
Last Update: 2013-06-20