|Table of Contents|

Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2013 05
Research Field:
Publishing date:


Expression of Functional Genes in Lignocellulose-dependent Lactic Acid Bacterium Pediococcus acidilactici DQ2
TU YiGAO QiuqiangBAO Jie
(State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China)
lignocellulose Pediococcus acidilactici DQ2 expression system promoter recombinant expression
Q936 : Q786

Pediococcus acidilactici DQ2, isolated by our lab, is thermotolerant and highly resistant to the inhibitors derived from lignocellulose, and can produce high titer of lactic acid. To construct the expression system of this strain, we modified the lactic acid bacterial expression vector pMG36e by replacing the promoter P32 with PldhL derived from P. acidilactici DQ2. Two different heterologous genes were expressed successfully with the new plasmid pTY36e: green fluorescent protein gene (gfp) from Aequorea victoria and β-glucosidase gene (bglA) from Bacillus polymyxa 1.794. The results showed β-glucosidase enzyme activity of the recombinant bacteria as 4.48 U g-1 (dry cells) detected in the intracellular fraction. The successful construction of this system lays the foundation for subsequent genetically engineering of P. acidilactici DQ2. Fig 4, Tab 3, Ref 25


1 何明雄, 祝其丽, 潘科, 胡启春. 利用木质纤维素类生物质发酵生产乙醇重组菌株研究进展[J]. 应用与环境生物学报, 2009, 15 (4): 579-584 [He MX, Zhu QL, Pan K, Hu QC. Progress in ethanol production with lignocellulosic biomass by different recombinant strains [J]. Chin J Appl Environ Biol, 2009, 15 (4): 579-584] 2 Andri? P, Meyer AS, Jensen PA, Dam-Johansen K. Effect and modeling of glucose inhibition and in situ glucose removal during enzymatic hydrolysis of pretreated wheat straw [J]. Appl Biochem Biotechnol, 2010, 160: 280-297 3 Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: a review [J]. Bioresour Technol, 2002, 83: 1-11 4 González-Candelas L, Aristoy MC, Polaina J, Flors A. Cloning and characterization of two genes from Bacillus polymyxa expressing beta-glucosidase activity in Escherichia coli [J]. Appl Environ Microbiol, 1989, 55: 3173-3177 5 赵云, 刘伟丰, 毛爱军, 江宁, 董志扬. 多粘芽孢杆菌(Bacillus polymyxa) β-葡萄糖苷酶基因在大肠杆菌中的表达、纯化及酶学性质分析[J]. 生物工程学报, 2004, 20: 741-844 [Zhao Y, Liu WF, Mao AJ, Jiang N, Dong ZY. Expression, purification and enzymatic characterization of Bacillus polymyxa β-glucosidase gene (bglA) in Escherichia coli [J]. Chin J Technol, 2004, 20: 741-844] 6 楚德强, 赵凯, 吴倩, 陶泰河, 鲍杰. 一株高耐受性乳酸菌的分离及其在木质纤维素发酵生产高浓度L-乳酸中的应用[J]. 华东理工大学学报自然科学版, 2011, 37: 521-523 [Chu DQ, Zhao K, Wu Q, Dao TH, Bao J. Isolation of a highly tolerant lactic acid bacterium and high titer L-lactic acid fermentation using lignocellulosic feedstock [J]. J East China Univ Sci Technol Nat Sci, 2011, 37: 521-523] 7 Zhao K, Qiao QA, ChuDQ, Gu HQ, Dao TH, Zhang J, Bao J. Simultaneous 816 应用与环境生物学报 Chin J Appl Environ Biol http://www.cibj.com/外源功能基因在木质纤维素依赖型乳酸菌...... 5期 saccharifification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2 [J]. Bioresour Technol, 2012, 135: 481-489 8 Grant SGN, Jessee J, Bloom FR, Hanahan D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylationrestriction mutants [J]. Proc Natl Acad Sci USA, 1990, 87: 4645-4649 9 Yanisch-Perron C, Vieira J, Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors [J]. Gene, 1985, 33: 103-119 10 Lin LC, Wang FG, Wei DZ, Chlorimuron ethyl as a new selectable marker for disrupting genes in the insect-pathogenic fungus. Metarhizium robertsii [J]. J Microbiol Methods, 2011, 87: 241-243 11 Van De Guchte M, Van Der Vossen J, Kok J, Venema G. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis [J]. Appl Environ Microbiol, 1989, 55: 224 12 Garmyn D, Ferain T, Bernard N, Hols P, Delcour J. Cloning, nucleotide sequence, and transcriptional analysis of the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene [J]. Appl Environ Microbiol, 1995, 61: 266-272 13 Rodríguez MC, Alegre MT, Mesas JM. Optimization of technical conditions for the transformation of Pediococcus acidilactici P60 by electroporation [J]. Plasmid, 2007, 58: 44-50 14 孙磊, 孔文涛, 孔健. 乳酸乳球菌电转化条件的研究[J]. 山东大学学报理学版, 2005, 40: 121-124 [Sun L, Kong WT, Kong J. The factors affected transformation efficiency of Lactococcus lactis by electroporation [J]. J Shandong Univ Sci Ed, 2005, 40: 121-124] 15 Grover AK, David MacMurchie D, Cushley RJ. Studies on almond emulsin β-D-glucosidase I. Isolation and characterization of a bifunctional isozyme [J]. Biochim Biophys Acta-Enzymol, 1977, 482: 98-108 16 Liu ZL, Weber SA, Cotta MA. Isolation and characterization of a β-Glucosidase from a Clavispora strain with potential applications in bioethanol production from cellulosic materials [J]. BioEnerg Res, 2012, 6 (1): 65-74 17 Chalfie M, Euskirchen YTG, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression [J]. Science, 1994, 264: 802-805 18 Liang XB, Zhang LX, Zhong J, Huan Ld. Secretory expression of a heterologous nattokinase in Lactococcus lactis [J]. Appl Microbiol Biotechnol, 2007, 75: 95-101 19 Vannini V, Rodríguez A, Vera JL, Valdéz GFde, Taranto MP, Sesma F. Cloning and heterologous expression of Lactobacillus reuteri uroporphyrinogen Ⅲ synthase/methyltransferase gene (cobA/hemD): preliminary characterization [J]. Biotechnol Lett, 2011, 33: 1625–1632 20 Stephenson DP, Moore RJ, Allison G.E. Transformation of, and heterologous protein expression in, Lactobacillus agilis and Lactobacillus vaginalis isolates from the chicken gastrointestinal tract [J]. Appl Environ Microbiol, 2010, 77: 220-228 21 DE VOS WM. Gene expression systems for lactic acid bacteria [J]. Curr Opin Microbiol, 1999, 2: 289-295 22 Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis [J]. Appl Microbiol Biotechnol, 2005, 68: 705-717 23 Borrero J, Jimenez JJ, Gutiez L, Herranz C, Cintas LM, Hernandez PE. Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria [J]. J Bacteriol, 2011, 156: 76-86 24 Hollmann A, Saviello M, Delfederico L, Saraiva TDL, Barh D, Jain N, Tiwari S, Chandra S, Gupta K, Zambare V, Kumar A, Christopher L, Misra AN, Kumavath RN, Azevedo V, Semorile L, Miyoshi A. Tight controlled expression and secretion of Lactobacillus brevis SlpA in Lactococcus lactis [J]. Biotechnol Lett, 2012, 34: 1275-1281 25 Le LY, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermudez-Humaran LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE. Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production [J]. Microb Cell Fact, 2005, 4: 2


Last Update: 2013-10-28