|Table of Contents|

Biosynthesis of Poly-γ-glutamic Acids and Relevant Regulatory Networks in Bacillus subtilis(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2013 04
Research Field:
Publishing date:


Biosynthesis of Poly-γ-glutamic Acids and Relevant Regulatory Networks in Bacillus subtilis
LI Xun ZHOU Cunyu TIAN Chunyuan RUAN Jing FEI Yongjun QIU Dongru
(1College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China)
(2Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China)
(3College of Life Sciences and Technology, Hubei University of Engineering, Xiaogan, 43200, China)
poly-γ-glutamic acids Bacillus subtilis quorum sensing two-component regulatory system swarming
Q936 : Q939.97

The poly-γ-glutamic acids (γ-PGA), a group of biocompatible, biodegradable and soluble macromolecular biopolymers of multiple uses in food, cosmetics, medicine and environmental protection, are synthesized by Bacillus species and a few other Gram-positive bacteria. PGA is also the main component of capsules of certain bacteria such as B. anthracis. The PGA synthetase complex is cytomembrane-associated and encoded by the gene cluster of pgsBCAE in B. subtilis and capBCAE in B. anthracis, respectively. In B. subtilis, the transcription of pgsBCAE and biosynthesis of PGA are regulated by the quorum sensing systems and other regulators which form a complex regulatory network. The cellular processes of PGA biosynthesis, natural competence, synthesis of bioactive secondary metabolites, sporulation, and swarming are interconnected and together play a central role in the bacterial adaptation to environmental changes and survival. This review introduced the progress in the study of PGA biosynthesis and relevant signal transduction and regulatory pathways, focusing on the cellular functions of two small regulatory polypeptides, DegQ and SwrA. The two small peptides mediate the interactions between the quorum sensing systems and the DegS-DegU two-component system, which directly controls the biosynthesis of PGA. Some insights are provided for the applications such as development of high yield strains and fermentation strategies for PGA production. Fig 3, Ref 48


1 Candela T, Fouet A. Poly-gamma-glutamate in bacteria [J]. Mol Microbiol, 2006, 60 (5): 1091-1098
2 Green BD, Battisti L, Koehler TM, Thorne CB, Ivins BE. Demonstration of a capsule plasmid in Bacillus anthracis [J]. Infect Immun, 1985, 49 (2): 291-297
3 Uchida I, Sekizaki T, Hashimoto K, Terakado N. Association of the encapsulation of Bacillus anthracis with a 60-megadalton plasmid [J]. J Gen Microbiol, 1985, 131 (2): 363-367
4 Candela T, Mock M, Fouet A. CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis [J]. J Bacteriol, 2005, 187 (22): 7765-7772
5 Ashiuchi M, Soda K, Misono H. A poly-gamma-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of ploy-glutamate produced by Escherichia coli clone cells [J]. Biochem Biophys Res Commun, 1999, 263 (1): 6-12
6 Urushibata Y, Tokuyama S, Tahara Y. Characterization of the Bacillus subtilis ywsC gene, involved in gamma-polyglutamic acid production [J]. J Bacteriol, 2002, 184 (2): 337-343
7 Ashiuchi M, Nawa C, Kamei T, Song JJ, Hong SP, Sung MH, Soda K, Misono H. Physiological and biochemical characteristics of poly-gamma-glutamate synthetase complex of Bacillus subtilis [J]. Eur J Biochem, 2001, 268 (20): 5321-5328
8 Troy FA. Chemistry and biosynthesis of the poly(-D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane mediated biosynthetic reaction [J]. J Biol Chem, 1973, 248 (1): 305-315
9 Troy FA. Chemistry and biosynthesis of the poly(-D-glutamyl) capsule in Bacillus licheniformis. II. Characterization and structural properties of the enzymatically synthesized polymer [J]. J Biol Chem, 1973, 248 (1): 316-324
10 Leonard CG, Housewright RD, Thorne CB. Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis [J]. J Bacteriol, 1958, 76 (5): 499-503
11 Leonard CG, Housewright RD. Polyglutamic acid synthesis by cell-free extracts of Bacillus licheniformis [J]. Biochim Biophys Acta, 1963, 73: 530-532
12 Gardner JM, Troy FA. Chemistry and biosynthesis of the poly (gamma-D-glutamyl) capsule in Bacillus licheniformis: activation, racemization, and polymerization of glutamic acid by a membranous polyglutamyl synthetase complex [J]. J Biol Chem, 1979, 254 (14): 6262-6269
13 Kada S, Nanamiya H, Kawamura F, Orinouchi S. Glr, a glutamate racemase, supplies D-glutamate to both peptidoglycan synthesis and poly-gamma-glutamate production in gamma-PGA-producing Bacillus subtilis [J]. FEMS Microbiol Lett, 2004, 236 (1): 13-20
14 Kimura K, Tran LS, Itoh Y. Roles and regulation of the glutamate racemase isogenes, racE and yrpC, in Bacillus subtilis [J]. Microbiology, 2004, 150 (Pt 9): 2911-2920
15 Eveland SS, Pompliano DL, Anderson MS. Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-glutamate ligases: identification of a ligase superfamily [J]. Biochemistry, 1997, 36 (20): 6223-6229
16 Candela T, Mignot T, Hagnerelle X, Haustant M, Fouet A. Genetic analysis of Bacillus anthracis Sap S-layer protein crystallization domain [J]. Microbiology, 2005, 151 (Pt 5): 1485-1490
17 Kocianova S, Vuong C, Yao Y, Voyich JM, Fischer ER, DeLeo FR, Otto M. Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis [J]. J Clin Invest, 2005, 115 (3): 688-694
18 Candela T, Fouet A. Bacillus anthracis CapD, belonging to the gamma-glutamyltranspeptidase family, is required for the covalent anchoring of capsule to peptidoglycan [J]. Mol Microbiol, 2005, 57 (3): 717-726
19 Thorne CB, Gomez CG, Noyes HE, Housewright RD. Production of glutamyl polypeptide by Bacillus subtilis [J]. J Bacteriol, 1954, 68 (3): 307-315
20 Makino S, Uchida I, Terakado N, Sasakawa C, Yoshikawa M. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis [J]. J Bacteriol, 1989, 171 (2): 722-730
21 Tran LS, Nagai T, Itoh Y. Divergent structure of the ComQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis [J]. Mol Microbiol, 2000, 37 (5): 1159-1171
22 Stanley NR, Lazazzera BA. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-DL-glutamic acid production and biofilm formation [J]. Mol Microbiol, 2005, 57 (4): 1143-1158
23 Msadek TF, Kunst AK, Rapoport G. DegS-DegU and ComP-ComA modulator-effector pairs control expression of the Bacillus subtilis pleiotropic regulatory gene degQ [J]. J Bacteriol, 1991, 173 (7): 2366-2377
24 Dubnau D. Genetic exchange and homologous recombination [A]. In: Sonenshein AL, Hoch JA, Losick R eds. Bacillus subtilis and Other Gram-positive Bacteria: Biochemistry, Physiology, and Molecular Genetics [C]. Washington: American Society for Microbiology, 1993. 555-584
25 Ogura M, Tsukahara K. SwrA regulates assembly of Bacillus subtilis DegU via its interaction with N-terminal domain of DegU [J]. J Biochem, 2012, 151 (6): 643-655
26 Lopez D, Vlamakis H, Kolter R. Generation of multiple cell types in Bacillus subtilis [J]. FEMS Microbiol Rev, 2009, 33 (1): 152-163
27 Ogura M, Yamaguchi H, Yoshida K, Fujita Y, Tanaka T. DNA microarray analysis of Bacillus subtilis DegU, ComA and PhoP regulons: an approach to comprehensive analysis of B. subtilis two-component regulatory systems [J]. Nucleic Acids Res, 2001, 29 (18): 3804-3813
28 Verhamme DT, Kiley TB, Stanley-Wall NR. DegU co-ordinates multicellular behavior exhibited by Bacillus subtilis [J]. Mol Microbiol, 2007, 65 (2): 554-568
29 Tsukahara K, Ogura M. Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB [J]. BMC Microbiol, 2008, 8: 8
30 Hamoen LW, Van Werkhoven AF, Venema G, Dubnau D. The pleiotropic response regulator DegU functions as a priming protein in competence development in Bacillus subtilis [J]. Proc Natl Acad Sci USA, 2000, 97 (16): 9246-9251
31 Kobayashi K. Gradual activation of the response regulator DegU controls serial expression of genes for flagellum formation and biofilm formation in Bacillus subtilis [J]. Mol Microbiol, 2007, 66 (2): 395-409
32 Veening JW, Igoshin OA, Eijlander RT, Nijland R, Hamoen LW, Kuipers OP. Transient heterogeneity in extracellular protease production by Bacillus subtilis [J]. Mol Syst Biol, 2008, 4: 184
33 Tsukahara K, Ogura M. Characterization of DegU-dependent expression of bpr in Bacillus subtilis [J]. FEMS Microbiol Lett, 2008, 280 (1): 8-13
34 Amati G, Bisicchia P, Galizzi A, DegU-P represses expression of the motility fla-che operon in Bacillus subtilis [J]. J Bacteriol, 2004, 186: 6003-6014
35 Ohsawa T, Tsukahara K, Ogura M. Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in gamma-poly-glutamic acid synthesis [J]. Biosci Biotechnol Biochem, 2009, 73 (9): 2096-2102
36 Kobayashi K. Gradual activation of the response regulator DegU controls serial expression of genes for ?agellum formation and bio?lm formation in Bacillus subtilis [J]. Mol Microbiol, 2007, 66 (2): 395-409
37 Murray EG, Kiley TB, Stanley NR. A pivotal role for the response regulator DegU in controlling multicellular behaviour [J]. Microbiology, 2009, 155 (Pt 1): 1-8
38 Kearns DB, Chu F, Rudner R, Losick R. Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility [J]. Mol Microbiol, 2004, 52 (2): 357-369
39 Calvio C, Celandroni F, Ghelardi E, Amati G, Salvetti S, Ceciliani F, Galizzi A, Senesi S. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon [J]. J Bacteriol, 2005, 187 (15): 5356-5366
40 Patrick JE, Kearns DB. Laboratory strains of Bacillus subtilis do not exhibit swarming motility [J]. J Bacteriol, 2009, 191 (22): 7129-7133
41 Kearns DB, Losick R. Cell population heterogeneity during growth of Bacillus subtilis [J]. Genes Dev, 2005, 19: 3083-3094
42 Osera C, Amati G, Calvio C, Galizzi A. SwrAA activates poly-γ-glutamate synthesis in addition to swarming in Bacillus subtilis [J]. Microbiology, 2009, 155 (Pt 7): 2282-2287
43 陈涛, 王靖宇, 班睿, 赵学明. 枯草芽孢杆菌感受态研究新进展[J]. 生命的化学, 2004, 24 (2): 130-134 [Chen T, Wang JY, Ban R, Zhao XM. Recent advance in the study of competence of Bacillus subtilis [J]. Chem Life, 2004, 24 (2): 130-134]
44 刘燕, 秦玉昌, 潘宝海. 芽孢形成中的sigma因子[J]. 生命科学, 2005, 17 (4): 355-359 [Liu Y, Qin YC, Pan BH. Advance of sigma factors in sporulation [J]. Chin Bull Life Sci, 2005, 17 (4): 355-359]
45 刘燕, 秦玉昌, 潘宝海. 枯草芽孢杆菌(Bacillus subtilis)在芽孢形成过程中的几个关键事件[J]. 生命科学, 2005, 17 (4): 360-363 [Liu Y, Qin YC, Pan BH. Several crucial events in sporulation of Bacillus subtilis [J]. Chin Bull Life Sci, 2005, 17 (4): 360-363]
46 吴永平, 周景文, 陈守文, 喻子牛. 枯草芽孢杆菌ME714产聚γ-谷氨酸固态发酵培养基的优化[J]. 应用与环境生物学报, 2007, 13 (5): 713-716 [Wu YP, Zhou JW, Chen SW, Yu ZN. Optimization of solid-state fermentation medium for poly-γ-glutamic acid production by Bacillus subtilis ME714 [J]. Chin J Appl Environ Biol, 2007, 13 (5): 713-716]
47 田春华, 冀志霞, 吴广涛, 陈守文. 苏云金芽胞杆菌聚γ-谷氨酸-明胶微胶囊剂制备及其抗逆性[J]. 应用与环境生物学报, 2009, 15 (3): 367-370 [Tian CH, Ji ZX, Wu GT, Chen SW. Formulation and stress resistance of poly-γ-glutamate-gelatin microcapsulation of Bacillus thuringiensis [J]. Chin J Appl Environ Biol, 2009, 15 (3): 367-370]
48 Yamashiro D, Yoshioka M, Ashiuchi M. Bacillus subtilis pgsE (Formerly ywtC) stimulates poly-γ-glutamate production in the presence of zinc [J]. Biotechnol Bioeng, 2011, 108 (1): 226-230


Last Update: 2013-08-22