|Table of Contents|

Screening of Peptides bound to Brash Border Membrane Vesicle of Nilaparvata lugens (Hemiptera: Delphacidae)(PDF)

Chinese Journal of Applied & Environmental Biology[ISSN:1006-687X/CN:51-1482/Q]

2013 04
Research Field:
Publishing date:


Screening of Peptides bound to Brash Border Membrane Vesicle of Nilaparvata lugens (Hemiptera: Delphacidae)
SHAO Ensi ZHUANG Haohan GUAN Xiong
(Key Laboratory of Bio-pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China)
rice brown planthopper (Nilaparvata lugens) BBMV phage display library midgut peptide
S476.1 : Q969.360.6

This research aimed to screen peptides which may bind to the brash border membrane vesicle (BBMV) extracted from the gut of rice brown planthopper (Nilaparvata lugens, Hemiptera: Delphacidae). BBMV of N. lugen was extracted with the same method for extracting BBMV from the gut of lepidopteran and dipteran insects. Then two peptides P1Z and P2Z that may bind to N. lugens gut BBMV were screened by the use of phage display library. Structure and function of screened peptides were analyzed by bio-analysis. Nucleotide of P1Z, P2Z and an unbound peptide UBP were fused to the 5’ terminus of egfp gene and P1Z/P2Z/UBP-EGFP fusion proteins were prepared. Binding activity of P1Z and P2Z to N. lugens gut BBMV were confirmed by Pull down and Western blot methods. The results showed that by the use of phage display library it is possible to find peptides which can bind to gut BBMV of N. lugens. Structure and function analysis of screened peptides show that the distribution differences of Alpha amphipathic regions and Beta amphipathic regions are the possible factors to affect BBMV binding activity of peptides. The results of this research could help to develop a new approach to block transmission of rice viruses by N. lugen. Fig 5, Tab 1, Ref 35


1 程遐年, 吴进才, 马飞. 褐飞虱研究与防治[M]. 北京: 中国农业出版社, 2003 [Cheng X, Wu J, Ma F. Brown Planthopper: Occurrence and Control [M]. Beijing: Chinese Agriculture Press, 2003
2 Saxena RC, Khan ZR. Factors affecting resistance of rice varieties to planthopper and leafhopper pests [J]. Agric Zool Rev, 1989, 3: 97-132
3 Chatterjee PB. Occurrence of Brown Planthopper on Rice in West Bengal [M]. India: International Rice Research Newsletter, 1978
4 Brown J, Bird J. Whitefly-transmitted geminiviruses and associated disorders in the Americas and the Caribbean Basin [J]. Plant Dis, 1992, 76 (3): 220-225
5 Banerjee S, Hess D, Majumder P, Roy D, Das S. The interactions of Allium sativum leaf agglutinin with a chaperonin group of unique receptor protein isolated from a bacterial endosymbiont of the mustard aphid [J]. J Biol Chem, 2004, 279 (22): 23782-23789
6 Jia D, Guo N, Chen H, Akita F, Xie L, Omura T, Wei T. Assembly of the viroplasm by viral non-structural protein Pns10 is essential for persistent infection of rice ragged stunt virus in its insect vector [J]. J Gen Virol, 2012, 93 (10): 2299-2309
7 Liu S, Sivakumar S, Sparks WO, Miller WA, Bonning BC. A peptide that binds the pea aphid gut impedes entry of Pea enation mosaic virus into the aphid hemocoel [J]. Virology, 2010, 401 (1): 107-116
8 Knight PJK, Crickmore N, Ellar DJ. The receptor for Bacillus thuringiensis CrylA (c) delta‐endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N [J]. Mol Microbiol, 1994, 11 (3): 429-436
9 Vadlamudi RK, Weber E, Ji I, Ji TH, Bulla Jr LA. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis [J]. J Biol Chem, 1995, 270 (10): 5490-5494
10 Jurat-Fuentes JL, Adang MJ. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae [J]. J Invertebr Pathol, 2006, 92 (3): 166-171
11 Jurat‐Fuentes JL, Adang MJ. Characterization of a Cry1Ac‐receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae [J]. Eur J Biochem, 2004, 271 (15): 3127-3135
12 Gómez JEC, López-Pazos SA, Cerón J. Determination of Cry toxin activity and identification of an aminopeptidase N receptor-like gene in Asymmathetes vulcanorum (Coleoptera: Curculionidae) [J]. J Invertebr Pathol, 2012, 111 (1): 94-98
13 Lu Q, Zhang Y, Cao G, Zhang L, Liang G, Lu Y, Wu K, Gao X, Guo Y. A fragment of cadherin-like protein enhances Bacillus thuringiensis Cry1B and Cry1C toxicity to Spodoptera exigua (Lepidoptera: Noctuidae) [J]. J Integr Agric, 2012, 11 (4): 628-638
14 Pigott CR, Ellar DJ. Role of receptors in Bacillus thuringiensis crystal toxin activity [J]. Microbiol Mol Bio Rev, 2007, 71 (2): 255-281
15 Bravo A, Gill SS, Soberon M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control [J]. Toxicon, 2007, 49 (4): 423-435
16 Lee MK, Walters FS, Hart H, Palekar N, Chen JS. The mode of action of the Bacillus thuringiensis vegetative insecticidal protein Vip3A differs from that of Cry1Ab δ-endotoxin [J]. Appl Environ Microb, 2003, 69 (8): 4648-4657
17 Gómez I, Pardo-López L, Munoz-Garay C, Fernandez L, Pérez C, Sánchez J, Soberón M, Bravo A. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis [J]. Peptides, 2007, 28 (1): 169-173
18 Liu S, Chougule NP, Vijayendran D, Bonning BC. Deep sequencing of the transcriptomes of soybean aphid and associated endosymbionts [J]. PLoS ONE, 2012, 7 (9): e45161
19 Walters FS, English LH. Toxicity of Bacillus thuringiensis δ‐endotoxins toward the potato aphid in an artificial diet bioassay [J]. Entomol Exp Appl, 1995, 77 (2): 211-216
20 Walters F, Kulesza C, Phillips A, English L. A stable oligomer of Bacillus thuringiensis delta-endotoxin, CryIIIA [J]. Insect Biochem Mol, 1994, 24 (10): 963-968
21 Chen M, Liu Z, Ye G, Shen Z, Hu C, Peng Y, Altosaar I, Shelton AM. Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis (Hemiptera: Miridae) -A case study of the compatibility of Bt rice with biological control [J]. Biol Control, 2007, 42 (2): 242-250
22 Han Y, Xu X, Ma W, Yuan B, Wang H, Liu F, Wang M, Wu G, Hua H. The influence of transgenic cry1Ab/cry1Ac, cry1C and cry2A rice on non-target planthoppers and their main predators under field conditions [J]. Agric Sci China, 2011, 10 (11): 1739-1747
23 Wang Y, Zhang G, Du J, Liu B, Wang M. Influence of transgenic hybrid rice expressing a fused gene derived from cry1Ab and cry1Ac on primary insect pests and rice yield [J]. Crop Prot, 2010, 29 (2): 128-133
24 Xia H, Lu BR, Xu K, Wang W, Yang X, Yang C, Luo J, Lai F, Ye W, Fu Q. Enhanced yield performance of Bt rice under target-insect attacks: implications for field insect management [J]. Transgenic Res, 2011, 20 (3): 655-664
25 Porcar M, Grenier AM, Federici B, Rahbé Y. Effects of Bacillus thuringiensis δ-endotoxins on the Pea Aphid (Acyrthosiphon pisum) [J]. Appl Environ Microbiol, 2009, 75 (14): 4897-4900
26 Li H, Chougule NP, Bonning BC. Interaction of the Bacillus thuringiensis delta endotoxins Cry1Ac and Cry3Aa with the gut of the pea aphid, Acyrthosiphon pisum (Harris) [J]. J Invertebr Pathol, 2011, 107: 69-78
27 Azzazy HME, Highsmith WE. Phage display technology: clinical applications and recent innovations [J]. Clin Biochem, 2002, 35 (6): 425-445
28 Mullen LM, Nair SP, Ward JM, Rycroft AN, Henderson B. Phage display in the study of infectious diseases [J]. Trends Microbiol, 2006, 14 (3): 141-147
29 Wu S, Koller C, Miller D, Bauer L, Dean D. Enhanced toxicity of Bacillus thuringiensis Cry3A δ-endotoxin in coleopterans by mutagenesis in a receptor binding loop [J]. FEBS Lett, 2000, 473 (2): 227-232
30 Fernández LE, Gómez I, Pacheco S, Arenas I, Gilla SS, Bravo A, Soberón M. Employing phage display to study the mode of action of Bacillus thuringiensis Cry toxins [J]. Peptides, 2008, 29 (2): 324-329
31 Wolfersberger M, Luethy P, Maurer A, Parenti P, Sacchi F, Giordana B, Hanozet G. Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicae) [J]. Comp Biochem Physiol A: Physiol,1987, 86 (2): 301-308
32 Chen L, Liang G, Rector B, Zhang J, Wu K, Guo Y. Effects of different brush border membrane vesicle isolation protocols on proteomic analysis of Cry1Ac binding proteins from the midgut of Helicoverpa armigera [J]. Insect Sci, 2008, 15 (6): 497-503
33 Leonardi M, Caccia S, Giordana B. Brush border membrane vesicles from dipteran midgut: a tool for studies on nutrient absorption [J]. ISJ, 2006, 3: 137-145
34 Bandyopadhyay S, Roy A, Das S. Binding of garlic (Allium sativum) leaf lectin to the gut receptors of homopteran pests is correlated to its insecticidal activity [J]. Plant Sci, 2001, 161 (5): 1025-1033
35 Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4 [J]. Nature, 1970, 227 (5259): 680-685


Last Update: 2013-08-22